Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Obtén la primera derivada.
Paso 1.1.1
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 1.1.1.1
Para aplicar la regla de la cadena, establece como .
Paso 1.1.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.1.3
Reemplaza todos los casos de con .
Paso 1.1.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 1.1.3
Combina y .
Paso 1.1.4
Combina los numeradores sobre el denominador común.
Paso 1.1.5
Simplifica el numerador.
Paso 1.1.5.1
Multiplica por .
Paso 1.1.5.2
Resta de .
Paso 1.1.6
Combina fracciones.
Paso 1.1.6.1
Mueve el negativo al frente de la fracción.
Paso 1.1.6.2
Combina y .
Paso 1.1.6.3
Mueve al denominador mediante la regla del exponente negativo .
Paso 1.1.7
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.8
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.9
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.10
Multiplica por .
Paso 1.1.11
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.12
Combina fracciones.
Paso 1.1.12.1
Suma y .
Paso 1.1.12.2
Combina y .
Paso 1.1.12.3
Multiplica por .
Paso 1.2
La primera derivada de con respecto a es .
Paso 2
Paso 2.1
Establece la primera derivada igual a .
Paso 2.2
Establece el numerador igual a cero.
Paso 2.3
Como , no hay soluciones.
No hay solución
No hay solución
Paso 3
Paso 3.1
Convierte las expresiones con exponentes fraccionarios en radicales.
Paso 3.1.1
Aplica la regla para reescribir la exponenciación como un radical.
Paso 3.1.2
Cualquier número elevado a la potencia de es la misma base.
Paso 3.2
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 3.3
Resuelve
Paso 3.3.1
Para eliminar el radical en el lazo izquierdo de la ecuación, eleva al cubo ambos lados de la ecuación.
Paso 3.3.2
Simplifica cada lado de la ecuación.
Paso 3.3.2.1
Usa para reescribir como .
Paso 3.3.2.2
Simplifica el lado izquierdo.
Paso 3.3.2.2.1
Simplifica .
Paso 3.3.2.2.1.1
Aplica la regla del producto a .
Paso 3.3.2.2.1.2
Eleva a la potencia de .
Paso 3.3.2.2.1.3
Multiplica los exponentes en .
Paso 3.3.2.2.1.3.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 3.3.2.2.1.3.2
Cancela el factor común de .
Paso 3.3.2.2.1.3.2.1
Cancela el factor común.
Paso 3.3.2.2.1.3.2.2
Reescribe la expresión.
Paso 3.3.2.2.1.4
Simplifica.
Paso 3.3.2.2.1.5
Aplica la propiedad distributiva.
Paso 3.3.2.2.1.6
Multiplica.
Paso 3.3.2.2.1.6.1
Multiplica por .
Paso 3.3.2.2.1.6.2
Multiplica por .
Paso 3.3.2.3
Simplifica el lado derecho.
Paso 3.3.2.3.1
Elevar a cualquier potencia positiva da como resultado .
Paso 3.3.3
Resuelve
Paso 3.3.3.1
Suma a ambos lados de la ecuación.
Paso 3.3.3.2
Divide cada término en por y simplifica.
Paso 3.3.3.2.1
Divide cada término en por .
Paso 3.3.3.2.2
Simplifica el lado izquierdo.
Paso 3.3.3.2.2.1
Cancela el factor común de .
Paso 3.3.3.2.2.1.1
Cancela el factor común.
Paso 3.3.3.2.2.1.2
Divide por .
Paso 3.3.3.2.3
Simplifica el lado derecho.
Paso 3.3.3.2.3.1
Divide por .
Paso 4
Paso 4.1
Evalúa en .
Paso 4.1.1
Sustituye por .
Paso 4.1.2
Simplifica.
Paso 4.1.2.1
Simplifica la expresión.
Paso 4.1.2.1.1
Multiplica por .
Paso 4.1.2.1.2
Resta de .
Paso 4.1.2.1.3
Reescribe como .
Paso 4.1.2.1.4
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 4.1.2.2
Cancela el factor común de .
Paso 4.1.2.2.1
Cancela el factor común.
Paso 4.1.2.2.2
Reescribe la expresión.
Paso 4.1.2.3
Elevar a cualquier potencia positiva da como resultado .
Paso 4.2
Enumera todos los puntos.
Paso 5