Ingresa un problema...
Cálculo Ejemplos
Paso 1
Escribe como una función.
Paso 2
Paso 2.1
Obtén la primera derivada.
Paso 2.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.1.2
Evalúa .
Paso 2.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.2.3
Combina y .
Paso 2.1.2.4
Multiplica por .
Paso 2.1.2.5
Combina y .
Paso 2.1.2.6
Cancela el factor común de y .
Paso 2.1.2.6.1
Factoriza de .
Paso 2.1.2.6.2
Cancela los factores comunes.
Paso 2.1.2.6.2.1
Factoriza de .
Paso 2.1.2.6.2.2
Cancela el factor común.
Paso 2.1.2.6.2.3
Reescribe la expresión.
Paso 2.1.3
Evalúa .
Paso 2.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.3.3
Multiplica por .
Paso 2.1.4
Evalúa .
Paso 2.1.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.1.4.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.1.4.3
Multiplica por .
Paso 2.2
Obtener la segunda derivada.
Paso 2.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2.2
Evalúa .
Paso 2.2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.2.3
Combina y .
Paso 2.2.2.4
Multiplica por .
Paso 2.2.2.5
Combina y .
Paso 2.2.2.6
Cancela el factor común de y .
Paso 2.2.2.6.1
Factoriza de .
Paso 2.2.2.6.2
Cancela los factores comunes.
Paso 2.2.2.6.2.1
Factoriza de .
Paso 2.2.2.6.2.2
Cancela el factor común.
Paso 2.2.2.6.2.3
Reescribe la expresión.
Paso 2.2.2.6.2.4
Divide por .
Paso 2.2.3
Evalúa .
Paso 2.2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.3.3
Multiplica por .
Paso 2.2.4
Evalúa .
Paso 2.2.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.4.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.4.3
Multiplica por .
Paso 2.3
La segunda derivada de con respecto a es .
Paso 3
Paso 3.1
Establece la segunda derivada igual a .
Paso 3.2
Factoriza el lado izquierdo de la ecuación.
Paso 3.2.1
Factoriza de .
Paso 3.2.1.1
Factoriza de .
Paso 3.2.1.2
Factoriza de .
Paso 3.2.1.3
Factoriza de .
Paso 3.2.1.4
Factoriza de .
Paso 3.2.1.5
Factoriza de .
Paso 3.2.2
Factoriza.
Paso 3.2.2.1
Factoriza con el método AC.
Paso 3.2.2.1.1
Considera la forma . Encuentra un par de números enteros cuyo producto sea y cuya suma sea . En este caso, cuyo producto es y cuya suma es .
Paso 3.2.2.1.2
Escribe la forma factorizada mediante estos números enteros.
Paso 3.2.2.2
Elimina los paréntesis innecesarios.
Paso 3.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 3.4
Establece igual a y resuelve .
Paso 3.4.1
Establece igual a .
Paso 3.4.2
Resuelve en .
Paso 3.4.2.1
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 3.4.2.2
Simplifica .
Paso 3.4.2.2.1
Reescribe como .
Paso 3.4.2.2.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 3.4.2.2.3
Más o menos es .
Paso 3.5
Establece igual a y resuelve .
Paso 3.5.1
Establece igual a .
Paso 3.5.2
Suma a ambos lados de la ecuación.
Paso 3.6
Establece igual a y resuelve .
Paso 3.6.1
Establece igual a .
Paso 3.6.2
Resta de ambos lados de la ecuación.
Paso 3.7
La solución final comprende todos los valores que hacen verdadera.
Paso 4
Paso 4.1
Sustituye en para obtener el valor de .
Paso 4.1.1
Reemplaza la variable con en la expresión.
Paso 4.1.2
Simplifica el resultado.
Paso 4.1.2.1
Simplifica cada término.
Paso 4.1.2.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 4.1.2.1.2
Multiplica por .
Paso 4.1.2.1.3
Elevar a cualquier potencia positiva da como resultado .
Paso 4.1.2.1.4
Multiplica por .
Paso 4.1.2.1.5
Elevar a cualquier potencia positiva da como resultado .
Paso 4.1.2.1.6
Multiplica por .
Paso 4.1.2.2
Simplifica mediante la adición de números.
Paso 4.1.2.2.1
Suma y .
Paso 4.1.2.2.2
Suma y .
Paso 4.1.2.3
La respuesta final es .
Paso 4.2
El punto que se obtiene mediante la sustitución de en es . Este puede ser un punto de inflexión.
Paso 4.3
Sustituye en para obtener el valor de .
Paso 4.3.1
Reemplaza la variable con en la expresión.
Paso 4.3.2
Simplifica el resultado.
Paso 4.3.2.1
Simplifica cada término.
Paso 4.3.2.1.1
Eleva a la potencia de .
Paso 4.3.2.1.2
Multiplica .
Paso 4.3.2.1.2.1
Combina y .
Paso 4.3.2.1.2.2
Multiplica por .
Paso 4.3.2.1.3
Eleva a la potencia de .
Paso 4.3.2.1.4
Multiplica por .
Paso 4.3.2.1.5
Eleva a la potencia de .
Paso 4.3.2.1.6
Multiplica por .
Paso 4.3.2.2
Obtén el denominador común
Paso 4.3.2.2.1
Escribe como una fracción con el denominador .
Paso 4.3.2.2.2
Multiplica por .
Paso 4.3.2.2.3
Multiplica por .
Paso 4.3.2.2.4
Escribe como una fracción con el denominador .
Paso 4.3.2.2.5
Multiplica por .
Paso 4.3.2.2.6
Multiplica por .
Paso 4.3.2.3
Combina los numeradores sobre el denominador común.
Paso 4.3.2.4
Simplifica cada término.
Paso 4.3.2.4.1
Multiplica por .
Paso 4.3.2.4.2
Multiplica por .
Paso 4.3.2.5
Simplifica la expresión.
Paso 4.3.2.5.1
Resta de .
Paso 4.3.2.5.2
Resta de .
Paso 4.3.2.5.3
Mueve el negativo al frente de la fracción.
Paso 4.3.2.6
La respuesta final es .
Paso 4.4
El punto que se obtiene mediante la sustitución de en es . Este puede ser un punto de inflexión.
Paso 4.5
Sustituye en para obtener el valor de .
Paso 4.5.1
Reemplaza la variable con en la expresión.
Paso 4.5.2
Simplifica el resultado.
Paso 4.5.2.1
Simplifica cada término.
Paso 4.5.2.1.1
Eleva a la potencia de .
Paso 4.5.2.1.2
Cancela el factor común de .
Paso 4.5.2.1.2.1
Factoriza de .
Paso 4.5.2.1.2.2
Factoriza de .
Paso 4.5.2.1.2.3
Cancela el factor común.
Paso 4.5.2.1.2.4
Reescribe la expresión.
Paso 4.5.2.1.3
Combina y .
Paso 4.5.2.1.4
Multiplica por .
Paso 4.5.2.1.5
Eleva a la potencia de .
Paso 4.5.2.1.6
Multiplica por .
Paso 4.5.2.1.7
Eleva a la potencia de .
Paso 4.5.2.1.8
Multiplica por .
Paso 4.5.2.2
Obtén el denominador común
Paso 4.5.2.2.1
Escribe como una fracción con el denominador .
Paso 4.5.2.2.2
Multiplica por .
Paso 4.5.2.2.3
Multiplica por .
Paso 4.5.2.2.4
Escribe como una fracción con el denominador .
Paso 4.5.2.2.5
Multiplica por .
Paso 4.5.2.2.6
Multiplica por .
Paso 4.5.2.3
Combina los numeradores sobre el denominador común.
Paso 4.5.2.4
Simplifica cada término.
Paso 4.5.2.4.1
Multiplica por .
Paso 4.5.2.4.2
Multiplica por .
Paso 4.5.2.5
Simplifica la expresión.
Paso 4.5.2.5.1
Suma y .
Paso 4.5.2.5.2
Resta de .
Paso 4.5.2.5.3
Mueve el negativo al frente de la fracción.
Paso 4.5.2.6
La respuesta final es .
Paso 4.6
El punto que se obtiene mediante la sustitución de en es . Este puede ser un punto de inflexión.
Paso 4.7
Determinar los puntos que podrían ser puntos de inflexión.
Paso 5
Divide en intervalos alrededor de los puntos que podrían ser puntos de inflexión.
Paso 6
Paso 6.1
Reemplaza la variable con en la expresión.
Paso 6.2
Simplifica el resultado.
Paso 6.2.1
Simplifica cada término.
Paso 6.2.1.1
Eleva a la potencia de .
Paso 6.2.1.2
Multiplica por .
Paso 6.2.1.3
Eleva a la potencia de .
Paso 6.2.1.4
Multiplica por .
Paso 6.2.1.5
Eleva a la potencia de .
Paso 6.2.1.6
Multiplica por .
Paso 6.2.2
Simplifica mediante suma y resta.
Paso 6.2.2.1
Suma y .
Paso 6.2.2.2
Resta de .
Paso 6.2.3
La respuesta final es .
Paso 6.3
En , la segunda derivada es . Dado que esto es positivo, la segunda derivada aumenta en el intervalo .
Incremento en ya que
Incremento en ya que
Paso 7
Paso 7.1
Reemplaza la variable con en la expresión.
Paso 7.2
Simplifica el resultado.
Paso 7.2.1
Simplifica cada término.
Paso 7.2.1.1
Usa la regla de la potencia para distribuir el exponente.
Paso 7.2.1.1.1
Aplica la regla del producto a .
Paso 7.2.1.1.2
Aplica la regla del producto a .
Paso 7.2.1.2
Eleva a la potencia de .
Paso 7.2.1.3
Multiplica por .
Paso 7.2.1.4
Eleva a la potencia de .
Paso 7.2.1.5
Eleva a la potencia de .
Paso 7.2.1.6
Cancela el factor común de .
Paso 7.2.1.6.1
Factoriza de .
Paso 7.2.1.6.2
Cancela el factor común.
Paso 7.2.1.6.3
Reescribe la expresión.
Paso 7.2.1.7
Usa la regla de la potencia para distribuir el exponente.
Paso 7.2.1.7.1
Aplica la regla del producto a .
Paso 7.2.1.7.2
Aplica la regla del producto a .
Paso 7.2.1.8
Eleva a la potencia de .
Paso 7.2.1.9
Eleva a la potencia de .
Paso 7.2.1.10
Eleva a la potencia de .
Paso 7.2.1.11
Cancela el factor común de .
Paso 7.2.1.11.1
Mueve el signo menos inicial en al numerador.
Paso 7.2.1.11.2
Factoriza de .
Paso 7.2.1.11.3
Factoriza de .
Paso 7.2.1.11.4
Cancela el factor común.
Paso 7.2.1.11.5
Reescribe la expresión.
Paso 7.2.1.12
Combina y .
Paso 7.2.1.13
Multiplica por .
Paso 7.2.1.14
Usa la regla de la potencia para distribuir el exponente.
Paso 7.2.1.14.1
Aplica la regla del producto a .
Paso 7.2.1.14.2
Aplica la regla del producto a .
Paso 7.2.1.15
Eleva a la potencia de .
Paso 7.2.1.16
Multiplica por .
Paso 7.2.1.17
Eleva a la potencia de .
Paso 7.2.1.18
Eleva a la potencia de .
Paso 7.2.1.19
Cancela el factor común de .
Paso 7.2.1.19.1
Factoriza de .
Paso 7.2.1.19.2
Cancela el factor común.
Paso 7.2.1.19.3
Reescribe la expresión.
Paso 7.2.1.20
Multiplica por .
Paso 7.2.2
Obtén el denominador común
Paso 7.2.2.1
Multiplica por .
Paso 7.2.2.2
Multiplica por .
Paso 7.2.2.3
Escribe como una fracción con el denominador .
Paso 7.2.2.4
Multiplica por .
Paso 7.2.2.5
Multiplica por .
Paso 7.2.2.6
Multiplica por .
Paso 7.2.3
Combina los numeradores sobre el denominador común.
Paso 7.2.4
Simplifica cada término.
Paso 7.2.4.1
Multiplica por .
Paso 7.2.4.2
Multiplica por .
Paso 7.2.5
Simplifica la expresión.
Paso 7.2.5.1
Suma y .
Paso 7.2.5.2
Resta de .
Paso 7.2.5.3
Mueve el negativo al frente de la fracción.
Paso 7.2.6
La respuesta final es .
Paso 7.3
En , la segunda derivada es . Dado que esto es negativo, la segunda derivada disminuye en el intervalo .
Decrecimiento en desde
Decrecimiento en desde
Paso 8
Paso 8.1
Reemplaza la variable con en la expresión.
Paso 8.2
Simplifica el resultado.
Paso 8.2.1
Simplifica cada término.
Paso 8.2.1.1
Multiplica por sumando los exponentes.
Paso 8.2.1.1.1
Multiplica por .
Paso 8.2.1.1.1.1
Eleva a la potencia de .
Paso 8.2.1.1.1.2
Usa la regla de la potencia para combinar exponentes.
Paso 8.2.1.1.2
Suma y .
Paso 8.2.1.2
Eleva a la potencia de .
Paso 8.2.1.3
Eleva a la potencia de .
Paso 8.2.1.4
Multiplica por .
Paso 8.2.1.5
Eleva a la potencia de .
Paso 8.2.1.6
Multiplica por .
Paso 8.2.2
Simplifica mediante la resta de números.
Paso 8.2.2.1
Resta de .
Paso 8.2.2.2
Resta de .
Paso 8.2.3
La respuesta final es .
Paso 8.3
En , la segunda derivada es . Dado que esto es negativo, la segunda derivada disminuye en el intervalo .
Decrecimiento en desde
Decrecimiento en desde
Paso 9
Paso 9.1
Reemplaza la variable con en la expresión.
Paso 9.2
Simplifica el resultado.
Paso 9.2.1
Simplifica cada término.
Paso 9.2.1.1
Eleva a la potencia de .
Paso 9.2.1.2
Multiplica por .
Paso 9.2.1.3
Eleva a la potencia de .
Paso 9.2.1.4
Multiplica por .
Paso 9.2.1.5
Eleva a la potencia de .
Paso 9.2.1.6
Multiplica por .
Paso 9.2.2
Simplifica mediante la resta de números.
Paso 9.2.2.1
Resta de .
Paso 9.2.2.2
Resta de .
Paso 9.2.3
La respuesta final es .
Paso 9.3
En , la segunda derivada es . Dado que esto es positivo, la segunda derivada aumenta en el intervalo .
Incremento en ya que
Incremento en ya que
Paso 10
Un punto de inflexión es un punto en una curva en el que la concavidad cambia de signo de más a menos o de menos a más. Los puntos de inflexión en este caso son .
Paso 11