Cálculo Ejemplos

Hallar la concavidad f(x)=1/12x^4-1/2x^3+x^2+2x-1
Paso 1
Find the values where the second derivative is equal to .
Toca para ver más pasos...
Paso 1.1
Obtener la segunda derivada.
Toca para ver más pasos...
Paso 1.1.1
Obtén la primera derivada.
Toca para ver más pasos...
Paso 1.1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.1.2
Evalúa .
Toca para ver más pasos...
Paso 1.1.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.1.2.3
Combina y .
Paso 1.1.1.2.4
Combina y .
Paso 1.1.1.2.5
Cancela el factor común de y .
Toca para ver más pasos...
Paso 1.1.1.2.5.1
Factoriza de .
Paso 1.1.1.2.5.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 1.1.1.2.5.2.1
Factoriza de .
Paso 1.1.1.2.5.2.2
Cancela el factor común.
Paso 1.1.1.2.5.2.3
Reescribe la expresión.
Paso 1.1.1.3
Evalúa .
Toca para ver más pasos...
Paso 1.1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.1.3.3
Multiplica por .
Paso 1.1.1.3.4
Combina y .
Paso 1.1.1.3.5
Combina y .
Paso 1.1.1.3.6
Mueve el negativo al frente de la fracción.
Paso 1.1.1.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.1.5
Evalúa .
Toca para ver más pasos...
Paso 1.1.1.5.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.1.5.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.1.5.3
Multiplica por .
Paso 1.1.1.6
Diferencia con la regla de la constante.
Toca para ver más pasos...
Paso 1.1.1.6.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.1.6.2
Suma y .
Paso 1.1.2
Obtener la segunda derivada.
Toca para ver más pasos...
Paso 1.1.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.2.2
Evalúa .
Toca para ver más pasos...
Paso 1.1.2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.2.3
Combina y .
Paso 1.1.2.2.4
Combina y .
Paso 1.1.2.2.5
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.1.2.2.5.1
Cancela el factor común.
Paso 1.1.2.2.5.2
Divide por .
Paso 1.1.2.3
Evalúa .
Toca para ver más pasos...
Paso 1.1.2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.3.3
Multiplica por .
Paso 1.1.2.3.4
Combina y .
Paso 1.1.2.3.5
Multiplica por .
Paso 1.1.2.3.6
Combina y .
Paso 1.1.2.3.7
Cancela el factor común de y .
Toca para ver más pasos...
Paso 1.1.2.3.7.1
Factoriza de .
Paso 1.1.2.3.7.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 1.1.2.3.7.2.1
Factoriza de .
Paso 1.1.2.3.7.2.2
Cancela el factor común.
Paso 1.1.2.3.7.2.3
Reescribe la expresión.
Paso 1.1.2.3.7.2.4
Divide por .
Paso 1.1.2.4
Evalúa .
Toca para ver más pasos...
Paso 1.1.2.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.4.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.2.4.3
Multiplica por .
Paso 1.1.2.5
Diferencia con la regla de la constante.
Toca para ver más pasos...
Paso 1.1.2.5.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.2.5.2
Suma y .
Paso 1.1.3
La segunda derivada de con respecto a es .
Paso 1.2
Establece la segunda derivada igual a luego resuelve la ecuación .
Toca para ver más pasos...
Paso 1.2.1
Establece la segunda derivada igual a .
Paso 1.2.2
Factoriza con el método AC.
Toca para ver más pasos...
Paso 1.2.2.1
Considera la forma . Encuentra un par de números enteros cuyo producto sea y cuya suma sea . En este caso, cuyo producto es y cuya suma es .
Paso 1.2.2.2
Escribe la forma factorizada mediante estos números enteros.
Paso 1.2.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 1.2.4
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 1.2.4.1
Establece igual a .
Paso 1.2.4.2
Suma a ambos lados de la ecuación.
Paso 1.2.5
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 1.2.5.1
Establece igual a .
Paso 1.2.5.2
Suma a ambos lados de la ecuación.
Paso 1.2.6
La solución final comprende todos los valores que hacen verdadera.
Paso 2
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Notación de intervalo:
Notación del constructor de conjuntos:
Paso 3
Crea intervalos alrededor de los valores de donde la segunda derivada es cero o indefinida.
Paso 4
Sustituye cualquier número del intervalo en la segunda derivada y evalúa para determinar la concavidad.
Toca para ver más pasos...
Paso 4.1
Reemplaza la variable con en la expresión.
Paso 4.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 4.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.2.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 4.2.1.2
Multiplica por .
Paso 4.2.2
Simplifica mediante la adición de números.
Toca para ver más pasos...
Paso 4.2.2.1
Suma y .
Paso 4.2.2.2
Suma y .
Paso 4.2.3
La respuesta final es .
Paso 4.3
La gráfica es convexa en el intervalo porque es positiva.
Convexo en dado que es positivo
Convexo en dado que es positivo
Paso 5
Sustituye cualquier número del intervalo en la segunda derivada y evalúa para determinar la concavidad.
Toca para ver más pasos...
Paso 5.1
Reemplaza la variable con en la expresión.
Paso 5.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 5.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 5.2.1.1
Eleva a la potencia de .
Paso 5.2.1.2
Multiplica por .
Paso 5.2.2
Simplifica mediante suma y resta.
Toca para ver más pasos...
Paso 5.2.2.1
Resta de .
Paso 5.2.2.2
Suma y .
Paso 5.2.3
La respuesta final es .
Paso 5.3
La gráfica es cóncava en el intervalo porque es negativa.
Cóncavo en dado que es negativo
Cóncavo en dado que es negativo
Paso 6
Sustituye cualquier número del intervalo en la segunda derivada y evalúa para determinar la concavidad.
Toca para ver más pasos...
Paso 6.1
Reemplaza la variable con en la expresión.
Paso 6.2
Simplifica el resultado.
Toca para ver más pasos...
Paso 6.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 6.2.1.1
Eleva a la potencia de .
Paso 6.2.1.2
Multiplica por .
Paso 6.2.2
Simplifica mediante suma y resta.
Toca para ver más pasos...
Paso 6.2.2.1
Resta de .
Paso 6.2.2.2
Suma y .
Paso 6.2.3
La respuesta final es .
Paso 6.3
La gráfica es convexa en el intervalo porque es positiva.
Convexo en dado que es positivo
Convexo en dado que es positivo
Paso 7
La gráfica es cóncava cuando la segunda derivada es negativa y convexa cuando la segunda derivada es positiva.
Convexo en dado que es positivo
Cóncavo en dado que es negativo
Convexo en dado que es positivo
Paso 8