Ingresa un problema...
Cálculo Ejemplos
Paso 1
Escribe como una función.
Paso 2
La función puede obtenerse mediante el cálculo de la integral indefinida de la derivada .
Paso 3
Establece la integral para resolver.
Paso 4
Divide la única integral en varias integrales.
Paso 5
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 6
Paso 6.1
Mueve fuera del denominador mediante su elevación a la potencia .
Paso 6.2
Multiplica los exponentes en .
Paso 6.2.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 6.2.2
Multiplica por .
Paso 7
Según la regla de la potencia, la integral de con respecto a es .
Paso 8
Paso 8.1
Combina y .
Paso 8.2
Mueve al denominador mediante la regla del exponente negativo .
Paso 9
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 10
Paso 10.1
Deja . Obtén .
Paso 10.1.1
Diferencia .
Paso 10.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 10.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 10.1.4
Multiplica por .
Paso 10.2
Reescribe el problema mediante y .
Paso 11
Combina y .
Paso 12
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 13
Paso 13.1
Combina y .
Paso 13.2
Cancela el factor común de y .
Paso 13.2.1
Factoriza de .
Paso 13.2.2
Cancela los factores comunes.
Paso 13.2.2.1
Factoriza de .
Paso 13.2.2.2
Cancela el factor común.
Paso 13.2.2.3
Reescribe la expresión.
Paso 13.2.2.4
Divide por .
Paso 14
La integral de con respecto a es .
Paso 15
Aplica la regla de la constante.
Paso 16
Simplifica.
Paso 17
Reemplaza todos los casos de con .
Paso 18
La respuesta es la antiderivada de la función .