Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.2
Evalúa .
Paso 1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.3
Combina y .
Paso 1.2.4
Multiplica por .
Paso 1.2.5
Combina y .
Paso 1.2.6
Mueve al denominador mediante la regla del exponente negativo .
Paso 1.2.7
Cancela el factor común de y .
Paso 1.2.7.1
Factoriza de .
Paso 1.2.7.2
Cancela los factores comunes.
Paso 1.2.7.2.1
Factoriza de .
Paso 1.2.7.2.2
Cancela el factor común.
Paso 1.2.7.2.3
Reescribe la expresión.
Paso 1.2.8
Mueve el negativo al frente de la fracción.
Paso 1.3
Evalúa .
Paso 1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.3
Combina y .
Paso 1.3.4
Multiplica por .
Paso 1.3.5
Combina y .
Paso 1.3.6
Cancela el factor común de y .
Paso 1.3.6.1
Factoriza de .
Paso 1.3.6.2
Cancela los factores comunes.
Paso 1.3.6.2.1
Factoriza de .
Paso 1.3.6.2.2
Cancela el factor común.
Paso 1.3.6.2.3
Reescribe la expresión.
Paso 1.3.6.2.4
Divide por .
Paso 1.4
Evalúa .
Paso 1.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.4.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.4.3
Combina y .
Paso 1.4.4
Multiplica por .
Paso 1.4.5
Combina y .
Paso 1.5
Evalúa .
Paso 1.5.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.5.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.5.3
Combina y .
Paso 1.5.4
Combina y .
Paso 1.5.5
Mueve al denominador mediante la regla del exponente negativo .
Paso 1.5.6
Mueve el negativo al frente de la fracción.
Paso 1.6
Reordena los términos.
Paso 2
Paso 2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2
Evalúa .
Paso 2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.3
Combina y .
Paso 2.2.4
Multiplica por .
Paso 2.2.5
Combina y .
Paso 2.2.6
Cancela el factor común de y .
Paso 2.2.6.1
Factoriza de .
Paso 2.2.6.2
Cancela los factores comunes.
Paso 2.2.6.2.1
Factoriza de .
Paso 2.2.6.2.2
Cancela el factor común.
Paso 2.2.6.2.3
Reescribe la expresión.
Paso 2.2.6.2.4
Divide por .
Paso 2.3
Evalúa .
Paso 2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.3
Multiplica por .
Paso 2.4
Evalúa .
Paso 2.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.4.2
Reescribe como .
Paso 2.4.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 2.4.3.1
Para aplicar la regla de la cadena, establece como .
Paso 2.4.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.4.3.3
Reemplaza todos los casos de con .
Paso 2.4.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.4.5
Multiplica los exponentes en .
Paso 2.4.5.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.4.5.2
Multiplica por .
Paso 2.4.6
Multiplica por .
Paso 2.4.7
Multiplica por sumando los exponentes.
Paso 2.4.7.1
Mueve .
Paso 2.4.7.2
Usa la regla de la potencia para combinar exponentes.
Paso 2.4.7.3
Resta de .
Paso 2.4.8
Multiplica por .
Paso 2.4.9
Combina y .
Paso 2.4.10
Multiplica por .
Paso 2.4.11
Combina y .
Paso 2.4.12
Mueve al denominador mediante la regla del exponente negativo .
Paso 2.5
Evalúa .
Paso 2.5.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.5.2
Reescribe como .
Paso 2.5.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 2.5.3.1
Para aplicar la regla de la cadena, establece como .
Paso 2.5.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.5.3.3
Reemplaza todos los casos de con .
Paso 2.5.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.5.5
Multiplica los exponentes en .
Paso 2.5.5.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.5.5.2
Multiplica por .
Paso 2.5.6
Multiplica por .
Paso 2.5.7
Multiplica por sumando los exponentes.
Paso 2.5.7.1
Mueve .
Paso 2.5.7.2
Usa la regla de la potencia para combinar exponentes.
Paso 2.5.7.3
Resta de .
Paso 2.5.8
Multiplica por .
Paso 2.5.9
Combina y .
Paso 2.5.10
Multiplica por .
Paso 2.5.11
Combina y .
Paso 2.5.12
Mueve al denominador mediante la regla del exponente negativo .
Paso 2.5.13
Cancela el factor común de y .
Paso 2.5.13.1
Factoriza de .
Paso 2.5.13.2
Cancela los factores comunes.
Paso 2.5.13.2.1
Factoriza de .
Paso 2.5.13.2.2
Cancela el factor común.
Paso 2.5.13.2.3
Reescribe la expresión.
Paso 3
Paso 3.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.2
Evalúa .
Paso 3.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.2.3
Multiplica por .
Paso 3.3
Evalúa .
Paso 3.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.3.3
Multiplica por .
Paso 3.4
Evalúa .
Paso 3.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.4.2
Reescribe como .
Paso 3.4.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 3.4.3.1
Para aplicar la regla de la cadena, establece como .
Paso 3.4.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.4.3.3
Reemplaza todos los casos de con .
Paso 3.4.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.4.5
Multiplica los exponentes en .
Paso 3.4.5.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 3.4.5.2
Multiplica por .
Paso 3.4.6
Multiplica por .
Paso 3.4.7
Multiplica por sumando los exponentes.
Paso 3.4.7.1
Mueve .
Paso 3.4.7.2
Usa la regla de la potencia para combinar exponentes.
Paso 3.4.7.3
Resta de .
Paso 3.4.8
Combina y .
Paso 3.4.9
Multiplica por .
Paso 3.4.10
Combina y .
Paso 3.4.11
Mueve al denominador mediante la regla del exponente negativo .
Paso 3.4.12
Cancela el factor común de y .
Paso 3.4.12.1
Factoriza de .
Paso 3.4.12.2
Cancela los factores comunes.
Paso 3.4.12.2.1
Factoriza de .
Paso 3.4.12.2.2
Cancela el factor común.
Paso 3.4.12.2.3
Reescribe la expresión.
Paso 3.4.13
Mueve el negativo al frente de la fracción.
Paso 3.5
Evalúa .
Paso 3.5.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.5.2
Reescribe como .
Paso 3.5.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 3.5.3.1
Para aplicar la regla de la cadena, establece como .
Paso 3.5.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.5.3.3
Reemplaza todos los casos de con .
Paso 3.5.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.5.5
Multiplica los exponentes en .
Paso 3.5.5.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 3.5.5.2
Multiplica por .
Paso 3.5.6
Multiplica por .
Paso 3.5.7
Multiplica por sumando los exponentes.
Paso 3.5.7.1
Mueve .
Paso 3.5.7.2
Usa la regla de la potencia para combinar exponentes.
Paso 3.5.7.3
Resta de .
Paso 3.5.8
Combina y .
Paso 3.5.9
Multiplica por .
Paso 3.5.10
Combina y .
Paso 3.5.11
Mueve al denominador mediante la regla del exponente negativo .
Paso 3.5.12
Cancela el factor común de y .
Paso 3.5.12.1
Factoriza de .
Paso 3.5.12.2
Cancela los factores comunes.
Paso 3.5.12.2.1
Factoriza de .
Paso 3.5.12.2.2
Cancela el factor común.
Paso 3.5.12.2.3
Reescribe la expresión.
Paso 3.5.13
Mueve el negativo al frente de la fracción.
Paso 3.6
Reordena los términos.
Paso 4
La tercera derivada de con respecto a es .