Cálculo Ejemplos

Evalúe la integral integral de 3 a 5 de (3x+5)/(x^2+2x-3) con respecto a x
Paso 1
Escribe la fracción mediante la descomposición en fracciones simples.
Toca para ver más pasos...
Paso 1.1
Descompone la fracción y multiplica por el denominador común.
Toca para ver más pasos...
Paso 1.1.1
Factoriza con el método AC.
Toca para ver más pasos...
Paso 1.1.1.1
Considera la forma . Encuentra un par de números enteros cuyo producto sea y cuya suma sea . En este caso, cuyo producto es y cuya suma es .
Paso 1.1.1.2
Escribe la forma factorizada mediante estos números enteros.
Paso 1.1.2
Para cada factor del denominador, crea una nueva fracción con el factor como denominador y un valor desconocido como numerador. Dado que el factor en el denominador es lineal, coloca una sola variable en su lugar .
Paso 1.1.3
Para cada factor del denominador, crea una nueva fracción con el factor como denominador y un valor desconocido como numerador. Dado que el factor en el denominador es lineal, coloca una sola variable en su lugar .
Paso 1.1.4
Multiplica cada fracción en la ecuación por el denominador de la expresión original. En este caso, el denominador es .
Paso 1.1.5
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.1.5.1
Cancela el factor común.
Paso 1.1.5.2
Reescribe la expresión.
Paso 1.1.6
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.1.6.1
Cancela el factor común.
Paso 1.1.6.2
Divide por .
Paso 1.1.7
Simplifica cada término.
Toca para ver más pasos...
Paso 1.1.7.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.1.7.1.1
Cancela el factor común.
Paso 1.1.7.1.2
Divide por .
Paso 1.1.7.2
Aplica la propiedad distributiva.
Paso 1.1.7.3
Mueve a la izquierda de .
Paso 1.1.7.4
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.1.7.4.1
Cancela el factor común.
Paso 1.1.7.4.2
Divide por .
Paso 1.1.7.5
Aplica la propiedad distributiva.
Paso 1.1.7.6
Mueve a la izquierda de .
Paso 1.1.7.7
Reescribe como .
Paso 1.1.8
Mueve .
Paso 1.2
Crea ecuaciones para las variables de fracción simple y úsalas para establecer un sistema de ecuaciones.
Toca para ver más pasos...
Paso 1.2.1
Crea una ecuación para las variables de fracción simple al igualar los coeficientes de de cada lado de la ecuación. Para que la ecuación sea igual, los coeficientes equivalentes en cada lado de la ecuación deben ser iguales.
Paso 1.2.2
Crea una ecuación para las variables de fracción simple al igualar los coeficientes de los términos que no contienen . Para que la ecuación sea igual, los coeficientes equivalentes en cada lado de la ecuación deben ser iguales.
Paso 1.2.3
Establece el sistema de ecuaciones para obtener los coeficientes de las fracciones parciales.
Paso 1.3
Resuelve el sistema de ecuaciones.
Toca para ver más pasos...
Paso 1.3.1
Resuelve en .
Toca para ver más pasos...
Paso 1.3.1.1
Reescribe la ecuación como .
Paso 1.3.1.2
Resta de ambos lados de la ecuación.
Paso 1.3.2
Reemplaza todos los casos de por en cada ecuación.
Toca para ver más pasos...
Paso 1.3.2.1
Reemplaza todos los casos de en por .
Paso 1.3.2.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 1.3.2.2.1
Simplifica .
Toca para ver más pasos...
Paso 1.3.2.2.1.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.3.2.2.1.1.1
Aplica la propiedad distributiva.
Paso 1.3.2.2.1.1.2
Multiplica por .
Paso 1.3.2.2.1.1.3
Multiplica por .
Paso 1.3.2.2.1.1.4
Reescribe como .
Paso 1.3.2.2.1.2
Resta de .
Paso 1.3.3
Resuelve en .
Toca para ver más pasos...
Paso 1.3.3.1
Reescribe la ecuación como .
Paso 1.3.3.2
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Toca para ver más pasos...
Paso 1.3.3.2.1
Resta de ambos lados de la ecuación.
Paso 1.3.3.2.2
Resta de .
Paso 1.3.3.3
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 1.3.3.3.1
Divide cada término en por .
Paso 1.3.3.3.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 1.3.3.3.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.3.3.3.2.1.1
Cancela el factor común.
Paso 1.3.3.3.2.1.2
Divide por .
Paso 1.3.3.3.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 1.3.3.3.3.1
Divide por .
Paso 1.3.4
Reemplaza todos los casos de por en cada ecuación.
Toca para ver más pasos...
Paso 1.3.4.1
Reemplaza todos los casos de en por .
Paso 1.3.4.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 1.3.4.2.1
Simplifica .
Toca para ver más pasos...
Paso 1.3.4.2.1.1
Multiplica por .
Paso 1.3.4.2.1.2
Resta de .
Paso 1.3.5
Enumera todas las soluciones.
Paso 1.4
Reemplaza cada uno de los coeficientes de fracción simple en con los valores obtenidos para y .
Paso 1.5
Elimina el cero de la expresión.
Paso 2
Divide la única integral en varias integrales.
Paso 3
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 4
Sea . Entonces . Reescribe mediante y .
Toca para ver más pasos...
Paso 4.1
Deja . Obtén .
Toca para ver más pasos...
Paso 4.1.1
Diferencia .
Paso 4.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 4.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.5
Suma y .
Paso 4.2
Sustituye el límite inferior por en .
Paso 4.3
Resta de .
Paso 4.4
Sustituye el límite superior por en .
Paso 4.5
Resta de .
Paso 4.6
Los valores obtenidos para y se usarán para evaluar la integral definida.
Paso 4.7
Reescribe el problema mediante , y los nuevos límites de integración.
Paso 5
La integral de con respecto a es .
Paso 6
Sea . Entonces . Reescribe mediante y .
Toca para ver más pasos...
Paso 6.1
Deja . Obtén .
Toca para ver más pasos...
Paso 6.1.1
Diferencia .
Paso 6.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 6.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 6.1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 6.1.5
Suma y .
Paso 6.2
Sustituye el límite inferior por en .
Paso 6.3
Suma y .
Paso 6.4
Sustituye el límite superior por en .
Paso 6.5
Suma y .
Paso 6.6
Los valores obtenidos para y se usarán para evaluar la integral definida.
Paso 6.7
Reescribe el problema mediante , y los nuevos límites de integración.
Paso 7
La integral de con respecto a es .
Paso 8
Sustituye y simplifica.
Toca para ver más pasos...
Paso 8.1
Evalúa en y en .
Paso 8.2
Evalúa en y en .
Paso 8.3
Elimina los paréntesis innecesarios.
Paso 9
Simplifica.
Toca para ver más pasos...
Paso 9.1
Usa la propiedad del cociente de los logaritmos, .
Paso 9.2
Usa la propiedad del cociente de los logaritmos, .
Paso 10
Simplifica.
Toca para ver más pasos...
Paso 10.1
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 10.2
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 10.3
Divide por .
Paso 10.4
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 10.5
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 10.6
Cancela el factor común de y .
Toca para ver más pasos...
Paso 10.6.1
Factoriza de .
Paso 10.6.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 10.6.2.1
Factoriza de .
Paso 10.6.2.2
Cancela el factor común.
Paso 10.6.2.3
Reescribe la expresión.
Paso 11
El resultado puede mostrarse de distintas formas.
Forma exacta:
Forma decimal:
Paso 12