Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Cancela el factor común de y .
Paso 1.1.1
Factoriza de .
Paso 1.1.2
Cancela los factores comunes.
Paso 1.1.2.1
Factoriza de .
Paso 1.1.2.2
Cancela el factor común.
Paso 1.1.2.3
Reescribe la expresión.
Paso 1.2
Mueve el término fuera del límite porque es constante con respecto a .
Paso 2
Paso 2.1
Evalúa el límite del numerador y el límite del denominador.
Paso 2.1.1
Resta el límite del numerador y el límite del denominador.
Paso 2.1.2
Evalúa el límite del numerador.
Paso 2.1.2.1
Mueve el límite dentro de la función trigonométrica porque la tangente es continua.
Paso 2.1.2.2
Evalúa el límite de mediante el ingreso de para .
Paso 2.1.2.3
El valor exacto de es .
Paso 2.1.3
Evalúa el límite del denominador.
Paso 2.1.3.1
Mueve el término fuera del límite porque es constante con respecto a .
Paso 2.1.3.2
Evalúa el límite de mediante el ingreso de para .
Paso 2.1.3.3
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 2.1.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 2.2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 2.3
Obtén la derivada del numerador y el denominador.
Paso 2.3.1
Diferencia el numerador y el denominador.
Paso 2.3.2
La derivada de con respecto a es .
Paso 2.3.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.5
Multiplica por .
Paso 2.4
Mueve el negativo del denominador de .
Paso 3
Paso 3.1
Mueve el término fuera del límite porque es constante con respecto a .
Paso 3.2
Mueve el exponente de fuera del límite mediante la regla de la potencia de límites.
Paso 3.3
Mueve el límite dentro de la función trigonométrica porque la secante es continua.
Paso 4
Evalúa el límite de mediante el ingreso de para .
Paso 5
Paso 5.1
Multiplica por .
Paso 5.2
El valor exacto de es .
Paso 5.3
Uno elevado a cualquier potencia es uno.
Paso 5.4
Multiplica por .