Cálculo Ejemplos

Halle la antiderivada e^(2x)dx
Paso 1
Escribe como una función.
Paso 2
La función puede obtenerse mediante el cálculo de la integral indefinida de la derivada .
Paso 3
Establece la integral para resolver.
Paso 4
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 5
Integra por partes mediante la fórmula , donde y .
Paso 6
Simplifica.
Toca para ver más pasos...
Paso 6.1
Combina y .
Paso 6.2
Combina y .
Paso 6.3
Combina y .
Paso 7
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 8
Sea . Entonces , de modo que . Reescribe mediante y .
Toca para ver más pasos...
Paso 8.1
Deja . Obtén .
Toca para ver más pasos...
Paso 8.1.1
Diferencia .
Paso 8.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 8.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 8.1.4
Multiplica por .
Paso 8.2
Reescribe el problema mediante y .
Paso 9
Combina y .
Paso 10
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 11
Simplifica.
Toca para ver más pasos...
Paso 11.1
Multiplica por .
Paso 11.2
Multiplica por .
Paso 12
La integral de con respecto a es .
Paso 13
Reescribe como .
Paso 14
Reemplaza todos los casos de con .
Paso 15
La respuesta es la antiderivada de la función .