Ingresa un problema...
Cálculo Ejemplos
Paso 1
Escribe como una función.
Paso 2
La función puede obtenerse mediante el cálculo de la integral indefinida de la derivada .
Paso 3
Establece la integral para resolver.
Paso 4
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 5
Integra por partes mediante la fórmula , donde y .
Paso 6
Combina y .
Paso 7
Paso 7.1
Deja . Obtén .
Paso 7.1.1
Diferencia .
Paso 7.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 7.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 7.1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 7.1.5
Suma y .
Paso 7.2
Reescribe el problema mediante y .
Paso 8
Paso 8.1
Multiplica por .
Paso 8.2
Mueve a la izquierda de .
Paso 9
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 10
La integral de con respecto a es .
Paso 11
Simplifica.
Paso 12
Reemplaza todos los casos de con .
Paso 13
Paso 13.1
Combina y .
Paso 13.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 13.3
Combina y .
Paso 13.4
Combina los numeradores sobre el denominador común.
Paso 13.5
Cancela el factor común de .
Paso 13.5.1
Cancela el factor común.
Paso 13.5.2
Reescribe la expresión.
Paso 13.6
Mueve a la izquierda de .
Paso 13.7
Reordena los factores en .
Paso 14
La respuesta es la antiderivada de la función .