Ingresa un problema...
Cálculo Ejemplos
Paso 1
Mueve el término fuera del límite porque es constante con respecto a .
Paso 2
Paso 2.1
Evalúa el límite del numerador y el límite del denominador.
Paso 2.1.1
Resta el límite del numerador y el límite del denominador.
Paso 2.1.2
Evalúa el límite del numerador.
Paso 2.1.2.1
Divide el límite mediante la regla del producto de límites en el límite en que se aproxima a .
Paso 2.1.2.2
Mueve el límite dentro del exponente.
Paso 2.1.2.3
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 2.1.2.4
Mueve el término fuera del límite porque es constante con respecto a .
Paso 2.1.2.5
Evalúa el límite de que es constante cuando se acerca a .
Paso 2.1.2.6
Evalúa los límites mediante el ingreso de para todos los casos de .
Paso 2.1.2.6.1
Evalúa el límite de mediante el ingreso de para .
Paso 2.1.2.6.2
Evalúa el límite de mediante el ingreso de para .
Paso 2.1.2.7
Simplifica la respuesta.
Paso 2.1.2.7.1
Multiplica por .
Paso 2.1.2.7.2
Suma y .
Paso 2.1.2.7.3
Multiplica por .
Paso 2.1.3
Evalúa el límite del denominador.
Paso 2.1.3.1
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 2.1.3.2
Mueve el término fuera del límite porque es constante con respecto a .
Paso 2.1.3.3
Mueve el exponente de fuera del límite mediante la regla de la potencia de límites.
Paso 2.1.3.4
Evalúa los límites mediante el ingreso de para todos los casos de .
Paso 2.1.3.4.1
Evalúa el límite de mediante el ingreso de para .
Paso 2.1.3.4.2
Evalúa el límite de mediante el ingreso de para .
Paso 2.1.3.5
Simplifica la respuesta.
Paso 2.1.3.5.1
Simplifica cada término.
Paso 2.1.3.5.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 2.1.3.5.1.2
Multiplica por .
Paso 2.1.3.5.2
Suma y .
Paso 2.1.3.5.3
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 2.1.3.6
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 2.1.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 2.2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 2.3
Obtén la derivada del numerador y el denominador.
Paso 2.3.1
Diferencia el numerador y el denominador.
Paso 2.3.2
Diferencia con la regla del producto, que establece que es donde y .
Paso 2.3.3
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 2.3.3.1
Para aplicar la regla de la cadena, establece como .
Paso 2.3.3.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 2.3.3.3
Reemplaza todos los casos de con .
Paso 2.3.4
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.3.5
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.6
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.7
Multiplica por .
Paso 2.3.8
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.9
Suma y .
Paso 2.3.10
Mueve a la izquierda de .
Paso 2.3.11
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.12
Multiplica por .
Paso 2.3.13
Simplifica.
Paso 2.3.13.1
Reordena los términos.
Paso 2.3.13.2
Reordena los factores en .
Paso 2.3.14
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.3.15
Evalúa .
Paso 2.3.15.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.15.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.15.3
Multiplica por .
Paso 2.3.16
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3
Paso 3.1
Divide el límite mediante la regla del cociente de límites en el límite en que se aproxima a .
Paso 3.2
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 3.3
Mueve el término fuera del límite porque es constante con respecto a .
Paso 3.4
Divide el límite mediante la regla del producto de límites en el límite en que se aproxima a .
Paso 3.5
Mueve el límite dentro del exponente.
Paso 3.6
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 3.7
Mueve el término fuera del límite porque es constante con respecto a .
Paso 3.8
Evalúa el límite de que es constante cuando se acerca a .
Paso 3.9
Mueve el límite dentro del exponente.
Paso 3.10
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 3.11
Mueve el término fuera del límite porque es constante con respecto a .
Paso 3.12
Evalúa el límite de que es constante cuando se acerca a .
Paso 3.13
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 3.14
Mueve el término fuera del límite porque es constante con respecto a .
Paso 3.15
Evalúa el límite de que es constante cuando se acerca a .
Paso 4
Paso 4.1
Evalúa el límite de mediante el ingreso de para .
Paso 4.2
Evalúa el límite de mediante el ingreso de para .
Paso 4.3
Evalúa el límite de mediante el ingreso de para .
Paso 4.4
Evalúa el límite de mediante el ingreso de para .
Paso 5
Paso 5.1
Simplifica el numerador.
Paso 5.1.1
Multiplica por .
Paso 5.1.2
Multiplica por .
Paso 5.1.3
Suma y .
Paso 5.1.4
Multiplica por .
Paso 5.1.5
Multiplica por .
Paso 5.1.6
Suma y .
Paso 5.1.7
Suma y .
Paso 5.2
Simplifica el denominador.
Paso 5.2.1
Multiplica por .
Paso 5.2.2
Suma y .
Paso 5.3
Divide por .
Paso 6
El resultado puede mostrarse de distintas formas.
Forma exacta:
Forma decimal: