Cálculo Ejemplos

أوجد dy/dx y=x+3 logaritmo natural de 5x-4x^2+e^(2x)-pi
Paso 1
Diferencia ambos lados de la ecuación.
Paso 2
La derivada de con respecto a es .
Paso 3
Diferencia el lado derecho de la ecuación.
Toca para ver más pasos...
Paso 3.1
Diferencia.
Toca para ver más pasos...
Paso 3.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.1.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.2
Evalúa .
Toca para ver más pasos...
Paso 3.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.2.2
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 3.2.2.1
Para aplicar la regla de la cadena, establece como .
Paso 3.2.2.2
La derivada de con respecto a es .
Paso 3.2.2.3
Reemplaza todos los casos de con .
Paso 3.2.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.2.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.2.5
Multiplica por .
Paso 3.2.6
Combina y .
Paso 3.2.7
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.2.7.1
Cancela el factor común.
Paso 3.2.7.2
Reescribe la expresión.
Paso 3.2.8
Combina y .
Paso 3.3
Evalúa .
Toca para ver más pasos...
Paso 3.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.3.3
Multiplica por .
Paso 3.4
Evalúa .
Toca para ver más pasos...
Paso 3.4.1
Diferencia con la regla de la cadena, que establece que es donde y .
Toca para ver más pasos...
Paso 3.4.1.1
Para aplicar la regla de la cadena, establece como .
Paso 3.4.1.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 3.4.1.3
Reemplaza todos los casos de con .
Paso 3.4.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.4.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.4.4
Multiplica por .
Paso 3.4.5
Mueve a la izquierda de .
Paso 3.5
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.6
Simplifica.
Toca para ver más pasos...
Paso 3.6.1
Suma y .
Paso 3.6.2
Reordena los términos.
Paso 4
Reforma la ecuación al hacer que el lado izquierdo sea igual al lado derecho.
Paso 5
Reemplaza con .