Cálculo Ejemplos

Halle la antiderivada (2+e^(3x))^2
Paso 1
Escribe como una función.
Paso 2
La función puede obtenerse mediante el cálculo de la integral indefinida de la derivada .
Paso 3
Establece la integral para resolver.
Paso 4
Simplifica.
Toca para ver más pasos...
Paso 4.1
Reescribe como .
Paso 4.2
Expande con el método PEIU (primero, exterior, interior, ultimo).
Toca para ver más pasos...
Paso 4.2.1
Aplica la propiedad distributiva.
Paso 4.2.2
Aplica la propiedad distributiva.
Paso 4.2.3
Aplica la propiedad distributiva.
Paso 4.3
Simplifica y combina los términos similares.
Toca para ver más pasos...
Paso 4.3.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.3.1.1
Multiplica por .
Paso 4.3.1.2
Mueve a la izquierda de .
Paso 4.3.1.3
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 4.3.1.3.1
Usa la regla de la potencia para combinar exponentes.
Paso 4.3.1.3.2
Suma y .
Paso 4.3.2
Suma y .
Paso 5
Divide la única integral en varias integrales.
Paso 6
Aplica la regla de la constante.
Paso 7
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 8
Sea . Entonces , de modo que . Reescribe mediante y .
Toca para ver más pasos...
Paso 8.1
Deja . Obtén .
Toca para ver más pasos...
Paso 8.1.1
Diferencia .
Paso 8.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 8.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 8.1.4
Multiplica por .
Paso 8.2
Reescribe el problema mediante y .
Paso 9
Combina y .
Paso 10
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 11
Combina y .
Paso 12
La integral de con respecto a es .
Paso 13
Sea . Entonces , de modo que . Reescribe mediante y .
Toca para ver más pasos...
Paso 13.1
Deja . Obtén .
Toca para ver más pasos...
Paso 13.1.1
Diferencia .
Paso 13.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 13.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 13.1.4
Multiplica por .
Paso 13.2
Reescribe el problema mediante y .
Paso 14
Combina y .
Paso 15
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 16
La integral de con respecto a es .
Paso 17
Simplifica.
Paso 18
Vuelve a sustituir para cada variable de sustitución de la integración.
Toca para ver más pasos...
Paso 18.1
Reemplaza todos los casos de con .
Paso 18.2
Reemplaza todos los casos de con .
Paso 19
La respuesta es la antiderivada de la función .