Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.2
Evalúa .
Paso 1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.2.3
Multiplica por .
Paso 1.3
Evalúa .
Paso 1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.3
Multiplica por .
Paso 2
Paso 2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2
Evalúa .
Paso 2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.3
Multiplica por .
Paso 2.3
Evalúa .
Paso 2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.3
Multiplica por .
Paso 3
Para obtener los valores mínimo y máximo locales de la función, establece la derivada igual a y resuelve.
Paso 4
Paso 4.1
Obtén la primera derivada.
Paso 4.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 4.1.2
Evalúa .
Paso 4.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.2.3
Multiplica por .
Paso 4.1.3
Evalúa .
Paso 4.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.1.3.3
Multiplica por .
Paso 4.2
La primera derivada de con respecto a es .
Paso 5
Paso 5.1
Establece la primera derivada igual a .
Paso 5.2
Factoriza de .
Paso 5.2.1
Factoriza de .
Paso 5.2.2
Factoriza de .
Paso 5.2.3
Factoriza de .
Paso 5.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 5.4
Establece igual a .
Paso 5.5
Establece igual a y resuelve .
Paso 5.5.1
Establece igual a .
Paso 5.5.2
Resuelve en .
Paso 5.5.2.1
Resta de ambos lados de la ecuación.
Paso 5.5.2.2
Divide cada término en por y simplifica.
Paso 5.5.2.2.1
Divide cada término en por .
Paso 5.5.2.2.2
Simplifica el lado izquierdo.
Paso 5.5.2.2.2.1
Cancela el factor común de .
Paso 5.5.2.2.2.1.1
Cancela el factor común.
Paso 5.5.2.2.2.1.2
Divide por .
Paso 5.5.2.2.3
Simplifica el lado derecho.
Paso 5.5.2.2.3.1
Mueve el negativo al frente de la fracción.
Paso 5.5.2.3
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 5.5.2.4
Simplifica .
Paso 5.5.2.4.1
Reescribe como .
Paso 5.5.2.4.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 5.5.2.5
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 5.5.2.5.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 5.5.2.5.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 5.5.2.5.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 5.6
La solución final comprende todos los valores que hacen verdadera.
Paso 6
Paso 6.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 7
Puntos críticos para evaluar.
Paso 8
Evalúa la segunda derivada en . Si la segunda derivada es positiva, entonces este es un mínimo local. Si es negativa, entonces este es un máximo local.
Paso 9
Paso 9.1
Simplifica cada término.
Paso 9.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 9.1.2
Multiplica por .
Paso 9.2
Suma y .
Paso 10
es un mínimo local porque el valor de la segunda derivada es positivo. Esto se conoce como prueba de la segunda derivada.
es un mínimo local
Paso 11
Paso 11.1
Reemplaza la variable con en la expresión.
Paso 11.2
Simplifica el resultado.
Paso 11.2.1
Simplifica cada término.
Paso 11.2.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 11.2.1.2
Multiplica por .
Paso 11.2.1.3
Elevar a cualquier potencia positiva da como resultado .
Paso 11.2.1.4
Multiplica por .
Paso 11.2.2
Suma y .
Paso 11.2.3
La respuesta final es .
Paso 12
Estos son los extremos locales de .
es un mínimo local
Paso 13