Cálculo Ejemplos

Evalúe la integral integral de 0 a 1 de (e^t+5e^(5t)) con respecto a t
Paso 1
Elimina los paréntesis.
Paso 2
Divide la única integral en varias integrales.
Paso 3
La integral de con respecto a es .
Paso 4
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 5
Sea . Entonces , de modo que . Reescribe mediante y .
Toca para ver más pasos...
Paso 5.1
Deja . Obtén .
Toca para ver más pasos...
Paso 5.1.1
Diferencia .
Paso 5.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 5.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 5.1.4
Multiplica por .
Paso 5.2
Sustituye el límite inferior por en .
Paso 5.3
Multiplica por .
Paso 5.4
Sustituye el límite superior por en .
Paso 5.5
Multiplica por .
Paso 5.6
Los valores obtenidos para y se usarán para evaluar la integral definida.
Paso 5.7
Reescribe el problema mediante , y los nuevos límites de integración.
Paso 6
Combina y .
Paso 7
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 8
Simplifica.
Toca para ver más pasos...
Paso 8.1
Combina y .
Paso 8.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 8.2.1
Cancela el factor común.
Paso 8.2.2
Reescribe la expresión.
Paso 8.3
Multiplica por .
Paso 9
La integral de con respecto a es .
Paso 10
Sustituye y simplifica.
Toca para ver más pasos...
Paso 10.1
Evalúa en y en .
Paso 10.2
Evalúa en y en .
Paso 10.3
Simplifica.
Toca para ver más pasos...
Paso 10.3.1
Simplifica.
Paso 10.3.2
Cualquier valor elevado a es .
Paso 10.3.3
Multiplica por .
Paso 10.3.4
Cualquier valor elevado a es .
Paso 10.3.5
Multiplica por .
Paso 10.3.6
Resta de .
Paso 11
El resultado puede mostrarse de distintas formas.
Forma exacta:
Forma decimal:
Paso 12