Cálculo Ejemplos

Halle la antiderivada f(x)=5/((2-8x)^3)
Paso 1
La función puede obtenerse mediante el cálculo de la integral indefinida de la derivada .
Paso 2
Establece la integral para resolver.
Paso 3
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 4
Escribe la fracción mediante la descomposición en fracciones simples.
Toca para ver más pasos...
Paso 4.1
Descompone la fracción y multiplica por el denominador común.
Toca para ver más pasos...
Paso 4.1.1
Factoriza la fracción.
Toca para ver más pasos...
Paso 4.1.1.1
Factoriza de .
Toca para ver más pasos...
Paso 4.1.1.1.1
Factoriza de .
Paso 4.1.1.1.2
Factoriza de .
Paso 4.1.1.1.3
Factoriza de .
Paso 4.1.1.2
Aplica la regla del producto a .
Paso 4.1.2
Para cada factor del denominador, crea una nueva fracción con el factor como denominador y un valor desconocido como numerador. Dado que el factor en el denominador es lineal, coloca una sola variable en su lugar .
Paso 4.1.3
Para cada factor del denominador, crea una nueva fracción con el factor como denominador y un valor desconocido como numerador. Dado que el factor en el denominador es lineal, coloca una sola variable en su lugar .
Paso 4.1.4
Para cada factor del denominador, crea una nueva fracción con el factor como denominador y un valor desconocido como numerador. Dado que el factor en el denominador es lineal, coloca una sola variable en su lugar .
Paso 4.1.5
Multiplica cada fracción en la ecuación por el denominador de la expresión original. En este caso, el denominador es .
Paso 4.1.6
Cancela el factor común de .
Toca para ver más pasos...
Paso 4.1.6.1
Cancela el factor común.
Paso 4.1.6.2
Reescribe la expresión.
Paso 4.1.7
Cancela el factor común de .
Toca para ver más pasos...
Paso 4.1.7.1
Cancela el factor común.
Paso 4.1.7.2
Reescribe la expresión.
Paso 4.1.8
Simplifica cada término.
Toca para ver más pasos...
Paso 4.1.8.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 4.1.8.1.1
Cancela el factor común.
Paso 4.1.8.1.2
Divide por .
Paso 4.1.8.2
Eleva a la potencia de .
Paso 4.1.8.3
Mueve a la izquierda de .
Paso 4.1.8.4
Cancela el factor común de y .
Toca para ver más pasos...
Paso 4.1.8.4.1
Factoriza de .
Paso 4.1.8.4.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 4.1.8.4.2.1
Multiplica por .
Paso 4.1.8.4.2.2
Cancela el factor común.
Paso 4.1.8.4.2.3
Reescribe la expresión.
Paso 4.1.8.4.2.4
Divide por .
Paso 4.1.8.5
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 4.1.8.6
Eleva a la potencia de .
Paso 4.1.8.7
Aplica la propiedad distributiva.
Paso 4.1.8.8
Multiplica por .
Paso 4.1.8.9
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 4.1.8.10
Multiplica por .
Paso 4.1.8.11
Cancela el factor común de y .
Toca para ver más pasos...
Paso 4.1.8.11.1
Factoriza de .
Paso 4.1.8.11.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 4.1.8.11.2.1
Multiplica por .
Paso 4.1.8.11.2.2
Cancela el factor común.
Paso 4.1.8.11.2.3
Reescribe la expresión.
Paso 4.1.8.11.2.4
Divide por .
Paso 4.1.8.12
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 4.1.8.13
Eleva a la potencia de .
Paso 4.1.8.14
Reescribe como .
Paso 4.1.8.15
Expande con el método PEIU (primero, exterior, interior, ultimo).
Toca para ver más pasos...
Paso 4.1.8.15.1
Aplica la propiedad distributiva.
Paso 4.1.8.15.2
Aplica la propiedad distributiva.
Paso 4.1.8.15.3
Aplica la propiedad distributiva.
Paso 4.1.8.16
Simplifica y combina los términos similares.
Toca para ver más pasos...
Paso 4.1.8.16.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.1.8.16.1.1
Multiplica por .
Paso 4.1.8.16.1.2
Multiplica por .
Paso 4.1.8.16.1.3
Multiplica por .
Paso 4.1.8.16.1.4
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 4.1.8.16.1.5
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 4.1.8.16.1.5.1
Mueve .
Paso 4.1.8.16.1.5.2
Multiplica por .
Paso 4.1.8.16.1.6
Multiplica por .
Paso 4.1.8.16.2
Resta de .
Paso 4.1.8.17
Aplica la propiedad distributiva.
Paso 4.1.8.18
Simplifica.
Toca para ver más pasos...
Paso 4.1.8.18.1
Multiplica por .
Paso 4.1.8.18.2
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 4.1.8.18.3
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 4.1.8.19
Simplifica cada término.
Toca para ver más pasos...
Paso 4.1.8.19.1
Multiplica por .
Paso 4.1.8.19.2
Multiplica por .
Paso 4.1.9
Simplifica la expresión.
Toca para ver más pasos...
Paso 4.1.9.1
Mueve .
Paso 4.1.9.2
Mueve .
Paso 4.1.9.3
Mueve .
Paso 4.1.9.4
Mueve .
Paso 4.1.9.5
Mueve .
Paso 4.1.9.6
Reordena y .
Paso 4.2
Crea ecuaciones para las variables de fracción simple y úsalas para establecer un sistema de ecuaciones.
Toca para ver más pasos...
Paso 4.2.1
Crea una ecuación para las variables de fracción simple al igualar los coeficientes de de cada lado de la ecuación. Para que la ecuación sea igual, los coeficientes equivalentes en cada lado de la ecuación deben ser iguales.
Paso 4.2.2
Crea una ecuación para las variables de fracción simple al igualar los coeficientes de de cada lado de la ecuación. Para que la ecuación sea igual, los coeficientes equivalentes en cada lado de la ecuación deben ser iguales.
Paso 4.2.3
Crea una ecuación para las variables de fracción simple al igualar los coeficientes de los términos que no contienen . Para que la ecuación sea igual, los coeficientes equivalentes en cada lado de la ecuación deben ser iguales.
Paso 4.2.4
Establece el sistema de ecuaciones para obtener los coeficientes de las fracciones parciales.
Paso 4.3
Resuelve el sistema de ecuaciones.
Toca para ver más pasos...
Paso 4.3.1
Resuelve en .
Toca para ver más pasos...
Paso 4.3.1.1
Reescribe la ecuación como .
Paso 4.3.1.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 4.3.1.2.1
Divide cada término en por .
Paso 4.3.1.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 4.3.1.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 4.3.1.2.2.1.1
Cancela el factor común.
Paso 4.3.1.2.2.1.2
Divide por .
Paso 4.3.1.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 4.3.1.2.3.1
Divide por .
Paso 4.3.2
Reemplaza todos los casos de por en cada ecuación.
Toca para ver más pasos...
Paso 4.3.2.1
Reemplaza todos los casos de en por .
Paso 4.3.2.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 4.3.2.2.1
Simplifica .
Toca para ver más pasos...
Paso 4.3.2.2.1.1
Multiplica por .
Paso 4.3.2.2.1.2
Suma y .
Paso 4.3.2.3
Reemplaza todos los casos de en por .
Paso 4.3.2.4
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 4.3.2.4.1
Simplifica .
Toca para ver más pasos...
Paso 4.3.2.4.1.1
Multiplica por .
Paso 4.3.2.4.1.2
Suma y .
Paso 4.3.3
Resuelve en .
Toca para ver más pasos...
Paso 4.3.3.1
Reescribe la ecuación como .
Paso 4.3.3.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 4.3.3.2.1
Divide cada término en por .
Paso 4.3.3.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 4.3.3.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 4.3.3.2.2.1.1
Cancela el factor común.
Paso 4.3.3.2.2.1.2
Divide por .
Paso 4.3.3.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 4.3.3.2.3.1
Divide por .
Paso 4.3.4
Reemplaza todos los casos de por en cada ecuación.
Toca para ver más pasos...
Paso 4.3.4.1
Reemplaza todos los casos de en por .
Paso 4.3.4.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 4.3.4.2.1
Simplifica .
Toca para ver más pasos...
Paso 4.3.4.2.1.1
Multiplica por .
Paso 4.3.4.2.1.2
Suma y .
Paso 4.3.5
Resuelve en .
Toca para ver más pasos...
Paso 4.3.5.1
Reescribe la ecuación como .
Paso 4.3.5.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 4.3.5.2.1
Divide cada término en por .
Paso 4.3.5.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 4.3.5.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 4.3.5.2.2.1.1
Cancela el factor común.
Paso 4.3.5.2.2.1.2
Divide por .
Paso 4.3.6
Resuelve el sistema de ecuaciones.
Paso 4.3.7
Enumera todas las soluciones.
Paso 4.4
Reemplaza cada uno de los coeficientes de fracción simple en con los valores obtenidos para , y .
Paso 4.5
Simplifica.
Toca para ver más pasos...
Paso 4.5.1
Multiplica el numerador por la recíproca del denominador.
Paso 4.5.2
Combinar.
Paso 4.5.3
Multiplica por .
Paso 4.5.4
Divide por .
Paso 4.5.5
Divide por .
Paso 4.5.6
Elimina el cero de la expresión.
Paso 5
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 6
Combina y .
Paso 7
Sea . Entonces , de modo que . Reescribe mediante y .
Toca para ver más pasos...
Paso 7.1
Deja . Obtén .
Toca para ver más pasos...
Paso 7.1.1
Diferencia .
Paso 7.1.2
Diferencia.
Toca para ver más pasos...
Paso 7.1.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 7.1.2.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 7.1.3
Evalúa .
Toca para ver más pasos...
Paso 7.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 7.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 7.1.3.3
Multiplica por .
Paso 7.1.4
Resta de .
Paso 7.2
Reescribe el problema mediante y .
Paso 8
Simplifica.
Toca para ver más pasos...
Paso 8.1
Mueve el negativo al frente de la fracción.
Paso 8.2
Multiplica por .
Paso 8.3
Mueve a la izquierda de .
Paso 9
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 10
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 11
Simplifica la expresión.
Toca para ver más pasos...
Paso 11.1
Simplifica.
Toca para ver más pasos...
Paso 11.1.1
Multiplica por .
Paso 11.1.2
Multiplica por .
Paso 11.2
Aplica reglas básicas de exponentes.
Toca para ver más pasos...
Paso 11.2.1
Mueve fuera del denominador mediante su elevación a la potencia .
Paso 11.2.2
Multiplica los exponentes en .
Toca para ver más pasos...
Paso 11.2.2.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 11.2.2.2
Multiplica por .
Paso 12
Según la regla de la potencia, la integral de con respecto a es .
Paso 13
Simplifica.
Toca para ver más pasos...
Paso 13.1
Reescribe como .
Paso 13.2
Simplifica.
Toca para ver más pasos...
Paso 13.2.1
Multiplica por .
Paso 13.2.2
Mueve a la izquierda de .
Paso 13.2.3
Multiplica por .
Paso 13.2.4
Multiplica por .
Paso 13.2.5
Multiplica por .
Paso 13.2.6
Multiplica por .
Paso 14
Reemplaza todos los casos de con .
Paso 15
La respuesta es la antiderivada de la función .