Cálculo Ejemplos

Halle la antiderivada raíz cuadrada de x^2-1
Paso 1
Escribe como una función.
Paso 2
La función puede obtenerse mediante el cálculo de la integral indefinida de la derivada .
Paso 3
Establece la integral para resolver.
Paso 4
Sea , donde . Entonces . Tenga en cuenta que ya que , es positiva.
Paso 5
Simplifica los términos.
Toca para ver más pasos...
Paso 5.1
Simplifica .
Toca para ver más pasos...
Paso 5.1.1
Aplica la identidad pitagórica.
Paso 5.1.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 5.2
Simplifica.
Toca para ver más pasos...
Paso 5.2.1
Eleva a la potencia de .
Paso 5.2.2
Eleva a la potencia de .
Paso 5.2.3
Usa la regla de la potencia para combinar exponentes.
Paso 5.2.4
Suma y .
Paso 6
Eleva a la potencia de .
Paso 7
Mediante la identidad pitagórica, reescribe como .
Paso 8
Simplifica los términos.
Toca para ver más pasos...
Paso 8.1
Aplica la propiedad distributiva.
Paso 8.2
Simplifica cada término.
Paso 9
Divide la única integral en varias integrales.
Paso 10
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 11
La integral de con respecto a es .
Paso 12
Factoriza de .
Paso 13
Integra por partes mediante la fórmula , donde y .
Paso 14
Eleva a la potencia de .
Paso 15
Eleva a la potencia de .
Paso 16
Usa la regla de la potencia para combinar exponentes.
Paso 17
Simplifica la expresión.
Toca para ver más pasos...
Paso 17.1
Suma y .
Paso 17.2
Reordena y .
Paso 18
Mediante la identidad pitagórica, reescribe como .
Paso 19
Simplifica mediante la multiplicación.
Toca para ver más pasos...
Paso 19.1
Reescribe la exponenciación como un producto.
Paso 19.2
Aplica la propiedad distributiva.
Paso 19.3
Reordena y .
Paso 20
Eleva a la potencia de .
Paso 21
Eleva a la potencia de .
Paso 22
Usa la regla de la potencia para combinar exponentes.
Paso 23
Suma y .
Paso 24
Eleva a la potencia de .
Paso 25
Usa la regla de la potencia para combinar exponentes.
Paso 26
Suma y .
Paso 27
Divide la única integral en varias integrales.
Paso 28
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 29
La integral de con respecto a es .
Paso 30
Simplifica mediante la multiplicación.
Toca para ver más pasos...
Paso 30.1
Aplica la propiedad distributiva.
Paso 30.2
Multiplica por .
Paso 31
Al resolver , obtenemos que = .
Paso 32
Multiplica por .
Paso 33
Simplifica.
Paso 34
Reemplaza todos los casos de con .
Paso 35
La respuesta es la antiderivada de la función .