Ingresa un problema...
Cálculo Ejemplos
,
Paso 1
Paso 1.1
Obtén la primera derivada.
Paso 1.1.1
Obtén la primera derivada.
Paso 1.1.1.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.1.1.2
Evalúa .
Paso 1.1.1.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.1.2.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.1.2.3
Multiplica por .
Paso 1.1.1.3
Evalúa .
Paso 1.1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.1.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.1.1.3.3
Multiplica por .
Paso 1.1.1.4
Reordena los términos.
Paso 1.1.2
La primera derivada de con respecto a es .
Paso 1.2
Establece la primera derivada igual a , luego resuelve la ecuación .
Paso 1.2.1
Establece la primera derivada igual a .
Paso 1.2.2
Factoriza de .
Paso 1.2.2.1
Factoriza de .
Paso 1.2.2.2
Factoriza de .
Paso 1.2.2.3
Factoriza de .
Paso 1.2.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 1.2.4
Establece igual a .
Paso 1.2.5
Establece igual a y resuelve .
Paso 1.2.5.1
Establece igual a .
Paso 1.2.5.2
Suma a ambos lados de la ecuación.
Paso 1.2.6
La solución final comprende todos los valores que hacen verdadera.
Paso 1.3
Obtén los valores en el lugar donde la derivada es indefinida.
Paso 1.3.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 1.4
Evalúa en cada valor donde la derivada sea o indefinida.
Paso 1.4.1
Evalúa en .
Paso 1.4.1.1
Sustituye por .
Paso 1.4.1.2
Simplifica.
Paso 1.4.1.2.1
Simplifica cada término.
Paso 1.4.1.2.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 1.4.1.2.1.2
Multiplica por .
Paso 1.4.1.2.1.3
Elevar a cualquier potencia positiva da como resultado .
Paso 1.4.1.2.1.4
Multiplica por .
Paso 1.4.1.2.2
Suma y .
Paso 1.4.2
Evalúa en .
Paso 1.4.2.1
Sustituye por .
Paso 1.4.2.2
Simplifica.
Paso 1.4.2.2.1
Simplifica cada término.
Paso 1.4.2.2.1.1
Eleva a la potencia de .
Paso 1.4.2.2.1.2
Multiplica por .
Paso 1.4.2.2.1.3
Eleva a la potencia de .
Paso 1.4.2.2.1.4
Multiplica por .
Paso 1.4.2.2.2
Resta de .
Paso 1.4.3
Enumera todos los puntos.
Paso 2
Excluye los puntos que no están en el intervalo.
Paso 3
Paso 3.1
Evalúa en .
Paso 3.1.1
Sustituye por .
Paso 3.1.2
Simplifica.
Paso 3.1.2.1
Simplifica cada término.
Paso 3.1.2.1.1
Uno elevado a cualquier potencia es uno.
Paso 3.1.2.1.2
Multiplica por .
Paso 3.1.2.1.3
Uno elevado a cualquier potencia es uno.
Paso 3.1.2.1.4
Multiplica por .
Paso 3.1.2.2
Resta de .
Paso 3.2
Evalúa en .
Paso 3.2.1
Sustituye por .
Paso 3.2.2
Simplifica.
Paso 3.2.2.1
Simplifica cada término.
Paso 3.2.2.1.1
Aplica la regla del producto a .
Paso 3.2.2.1.2
Eleva a la potencia de .
Paso 3.2.2.1.3
Eleva a la potencia de .
Paso 3.2.2.1.4
Multiplica .
Paso 3.2.2.1.4.1
Combina y .
Paso 3.2.2.1.4.2
Multiplica por .
Paso 3.2.2.1.5
Aplica la regla del producto a .
Paso 3.2.2.1.6
Eleva a la potencia de .
Paso 3.2.2.1.7
Eleva a la potencia de .
Paso 3.2.2.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 3.2.2.3
Escribe cada expresión con un denominador común de , mediante la multiplicación de cada uno por un factor adecuado de .
Paso 3.2.2.3.1
Multiplica por .
Paso 3.2.2.3.2
Multiplica por .
Paso 3.2.2.4
Combina los numeradores sobre el denominador común.
Paso 3.2.2.5
Simplifica el numerador.
Paso 3.2.2.5.1
Multiplica por .
Paso 3.2.2.5.2
Resta de .
Paso 3.3
Enumera todos los puntos.
Paso 4
Compara los valores de encontrados para cada valor de para determinar el máximo y el mínimo absolutos en el intervalo dado. El máximo ocurrirá en el valor más alto de y el mínimo ocurrirá en el valor más bajo de .
Máximo absoluto:
Mínimo absoluto:
Paso 5