Cálculo Ejemplos

Halle la antiderivada 6e^(2x)+(x+1)^4
Paso 1
Escribe como una función.
Paso 2
La función puede obtenerse mediante el cálculo de la integral indefinida de la derivada .
Paso 3
Establece la integral para resolver.
Paso 4
Divide la única integral en varias integrales.
Paso 5
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 6
Sea . Entonces , de modo que . Reescribe mediante y .
Toca para ver más pasos...
Paso 6.1
Deja . Obtén .
Toca para ver más pasos...
Paso 6.1.1
Diferencia .
Paso 6.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 6.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 6.1.4
Multiplica por .
Paso 6.2
Reescribe el problema mediante y .
Paso 7
Combina y .
Paso 8
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 9
Simplifica.
Toca para ver más pasos...
Paso 9.1
Combina y .
Paso 9.2
Cancela el factor común de y .
Toca para ver más pasos...
Paso 9.2.1
Factoriza de .
Paso 9.2.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 9.2.2.1
Factoriza de .
Paso 9.2.2.2
Cancela el factor común.
Paso 9.2.2.3
Reescribe la expresión.
Paso 9.2.2.4
Divide por .
Paso 10
La integral de con respecto a es .
Paso 11
Sea . Entonces . Reescribe mediante y .
Toca para ver más pasos...
Paso 11.1
Deja . Obtén .
Toca para ver más pasos...
Paso 11.1.1
Diferencia .
Paso 11.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 11.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 11.1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 11.1.5
Suma y .
Paso 11.2
Reescribe el problema mediante y .
Paso 12
Según la regla de la potencia, la integral de con respecto a es .
Paso 13
Simplifica.
Paso 14
Vuelve a sustituir para cada variable de sustitución de la integración.
Toca para ver más pasos...
Paso 14.1
Reemplaza todos los casos de con .
Paso 14.2
Reemplaza todos los casos de con .
Paso 15
La respuesta es la antiderivada de la función .