Cálculo Ejemplos

Evaluar utilizando la regla de L''Hôpital limite a medida que x se aproxima a pi de (x+pisec(x))/(x^2-pi^2)
Paso 1
Evalúa el límite del numerador y el límite del denominador.
Toca para ver más pasos...
Paso 1.1
Resta el límite del numerador y el límite del denominador.
Paso 1.2
Evalúa el límite del numerador.
Toca para ver más pasos...
Paso 1.2.1
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 1.2.2
Mueve el término fuera del límite porque es constante con respecto a .
Paso 1.2.3
Mueve el límite dentro de la función trigonométrica porque la secante es continua.
Paso 1.2.4
Evalúa los límites mediante el ingreso de para todos los casos de .
Toca para ver más pasos...
Paso 1.2.4.1
Evalúa el límite de mediante el ingreso de para .
Paso 1.2.4.2
Evalúa el límite de mediante el ingreso de para .
Paso 1.2.5
Simplifica la respuesta.
Toca para ver más pasos...
Paso 1.2.5.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.2.5.1.1
Aplica el ángulo de referencia mediante la búsqueda del ángulo con valores trigonométricos equivalentes en el primer cuadrante. Haz que la expresión sea negativa porque la secante es negativa en el segundo cuadrante.
Paso 1.2.5.1.2
El valor exacto de es .
Paso 1.2.5.1.3
Multiplica por .
Paso 1.2.5.1.4
Mueve a la izquierda de .
Paso 1.2.5.1.5
Reescribe como .
Paso 1.2.5.2
Resta de .
Paso 1.3
Evalúa el límite del denominador.
Toca para ver más pasos...
Paso 1.3.1
Evalúa el límite.
Toca para ver más pasos...
Paso 1.3.1.1
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 1.3.1.2
Mueve el exponente de fuera del límite mediante la regla de la potencia de límites.
Paso 1.3.1.3
Evalúa el límite de que es constante cuando se acerca a .
Paso 1.3.2
Evalúa el límite de mediante el ingreso de para .
Paso 1.3.3
Resta de .
Paso 1.3.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 1.4
La expresión contiene una división por . La expresión es indefinida.
Indefinida
Paso 2
Como es de forma indeterminada, aplica la regla de l'Hôpital. La regla de l'Hôpital establece que el límite de un cociente de funciones es igual al límite del cociente de sus derivadas.
Paso 3
Obtén la derivada del numerador y el denominador.
Toca para ver más pasos...
Paso 3.1
Diferencia el numerador y el denominador.
Paso 3.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.4
Evalúa .
Toca para ver más pasos...
Paso 3.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.4.2
La derivada de con respecto a es .
Paso 3.4.3
Elimina los paréntesis.
Paso 3.5
Reordena los términos.
Paso 3.6
Según la regla de la suma, la derivada de con respecto a es .
Paso 3.7
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.8
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.9
Suma y .
Paso 4
Mueve el término fuera del límite porque es constante con respecto a .
Paso 5
Divide el límite mediante la regla del cociente de límites en el límite en que se aproxima a .
Paso 6
Divide el límite mediante la regla de la suma de límites en el límite en que se aproxima a .
Paso 7
Mueve el término fuera del límite porque es constante con respecto a .
Paso 8
Divide el límite mediante la regla del producto de límites en el límite en que se aproxima a .
Paso 9
Mueve el límite dentro de la función trigonométrica porque la secante es continua.
Paso 10
Mueve el límite dentro de la función trigonométrica porque la tangente es continua.
Paso 11
Evalúa el límite de que es constante cuando se acerca a .
Paso 12
Evalúa los límites mediante el ingreso de para todos los casos de .
Toca para ver más pasos...
Paso 12.1
Evalúa el límite de mediante el ingreso de para .
Paso 12.2
Evalúa el límite de mediante el ingreso de para .
Paso 12.3
Evalúa el límite de mediante el ingreso de para .
Paso 13
Simplifica la respuesta.
Toca para ver más pasos...
Paso 13.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 13.1.1
Aplica el ángulo de referencia mediante la búsqueda del ángulo con valores trigonométricos equivalentes en el primer cuadrante. Haz que la expresión sea negativa porque la secante es negativa en el segundo cuadrante.
Paso 13.1.2
El valor exacto de es .
Paso 13.1.3
Multiplica por .
Paso 13.1.4
Mueve a la izquierda de .
Paso 13.1.5
Reescribe como .
Paso 13.1.6
Aplica el ángulo de referencia mediante la búsqueda del ángulo con valores trigonométricos equivalentes en el primer cuadrante. Haz que la expresión sea negativa porque la tangente es negativa en el segundo cuadrante.
Paso 13.1.7
El valor exacto de es .
Paso 13.1.8
Multiplica por .
Paso 13.1.9
Multiplica .
Toca para ver más pasos...
Paso 13.1.9.1
Multiplica por .
Paso 13.1.9.2
Multiplica por .
Paso 13.1.10
Suma y .
Paso 13.2
Multiplica por .