Cálculo Ejemplos

Resuelve la Ecuación Diferencial (dx)/(dy)+x/y=3/(xy)
Paso 1
Separa las variables.
Toca para ver más pasos...
Paso 1.1
Resuelve
Toca para ver más pasos...
Paso 1.1.1
Resta de ambos lados de la ecuación.
Paso 1.1.2
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Toca para ver más pasos...
Paso 1.1.2.1
Resta de ambos lados de la ecuación.
Paso 1.1.2.2
Suma a ambos lados de la ecuación.
Paso 1.2
Factoriza.
Toca para ver más pasos...
Paso 1.2.1
Para escribir como una fracción con un denominador común, multiplica por .
Paso 1.2.2
Escribe cada expresión con un denominador común de , mediante la multiplicación de cada uno por un factor adecuado de .
Toca para ver más pasos...
Paso 1.2.2.1
Multiplica por .
Paso 1.2.2.2
Reordena los factores de .
Paso 1.2.3
Combina los numeradores sobre el denominador común.
Paso 1.2.4
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 1.2.4.1
Mueve .
Paso 1.2.4.2
Multiplica por .
Paso 1.3
Reagrupa los factores.
Paso 1.4
Multiplica ambos lados por .
Paso 1.5
Simplifica.
Toca para ver más pasos...
Paso 1.5.1
Multiplica por .
Paso 1.5.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.5.2.1
Factoriza de .
Paso 1.5.2.2
Cancela el factor común.
Paso 1.5.2.3
Reescribe la expresión.
Paso 1.5.3
Multiplica por .
Paso 1.5.4
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.5.4.1
Cancela el factor común.
Paso 1.5.4.2
Reescribe la expresión.
Paso 1.6
Reescribe la ecuación.
Paso 2
Integra ambos lados.
Toca para ver más pasos...
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
Integra el lado izquierdo.
Toca para ver más pasos...
Paso 2.2.1
Sea . Entonces , de modo que . Reescribe mediante y .
Toca para ver más pasos...
Paso 2.2.1.1
Deja . Obtén .
Toca para ver más pasos...
Paso 2.2.1.1.1
Diferencia .
Paso 2.2.1.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2.1.1.3
Evalúa .
Toca para ver más pasos...
Paso 2.2.1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.1.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.1.1.3.3
Multiplica por .
Paso 2.2.1.1.4
Diferencia con la regla de la constante.
Toca para ver más pasos...
Paso 2.2.1.1.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.1.1.4.2
Suma y .
Paso 2.2.1.2
Reescribe el problema mediante y .
Paso 2.2.2
Simplifica.
Toca para ver más pasos...
Paso 2.2.2.1
Mueve el negativo al frente de la fracción.
Paso 2.2.2.2
Multiplica por .
Paso 2.2.2.3
Mueve a la izquierda de .
Paso 2.2.3
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.2.4
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.2.5
La integral de con respecto a es .
Paso 2.2.6
Simplifica.
Paso 2.2.7
Reemplaza todos los casos de con .
Paso 2.3
La integral de con respecto a es .
Paso 2.4
Agrupa la constante de integración en el lado derecho como .
Paso 3
Resuelve
Toca para ver más pasos...
Paso 3.1
Multiplica ambos lados de la ecuación por .
Paso 3.2
Simplifica ambos lados de la ecuación.
Toca para ver más pasos...
Paso 3.2.1
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.2.1.1
Simplifica .
Toca para ver más pasos...
Paso 3.2.1.1.1
Combina y .
Paso 3.2.1.1.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.2.1.1.2.1
Mueve el signo menos inicial en al numerador.
Paso 3.2.1.1.2.2
Factoriza de .
Paso 3.2.1.1.2.3
Cancela el factor común.
Paso 3.2.1.1.2.4
Reescribe la expresión.
Paso 3.2.1.1.3
Multiplica.
Toca para ver más pasos...
Paso 3.2.1.1.3.1
Multiplica por .
Paso 3.2.1.1.3.2
Multiplica por .
Paso 3.2.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.2.2.1
Aplica la propiedad distributiva.
Paso 3.3
Mueve todos los términos que contengan un logaritmo al lado izquierdo de la ecuación.
Paso 3.4
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.4.1
Simplifica .
Toca para ver más pasos...
Paso 3.4.1.1
Simplifica cada término.
Toca para ver más pasos...
Paso 3.4.1.1.1
Simplifica al mover dentro del algoritmo.
Paso 3.4.1.1.2
Elimina el valor absoluto en porque las potenciaciones con potencias pares siempre son positivas.
Paso 3.4.1.2
Usa las propiedades de los logaritmos del producto, .
Paso 3.4.1.3
Reordena los factores en .
Paso 3.5
Para resolver , reescribe la ecuación mediante las propiedades de los logaritmos.
Paso 3.6
Reescribe en formato exponencial mediante la definición de un logaritmo. Si y son números reales positivos y , entonces es equivalente a .
Paso 3.7
Resuelve
Toca para ver más pasos...
Paso 3.7.1
Reescribe la ecuación como .
Paso 3.7.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 3.7.2.1
Divide cada término en por .
Paso 3.7.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.7.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.7.2.2.1.1
Cancela el factor común.
Paso 3.7.2.2.1.2
Divide por .
Paso 3.7.3
Elimina el término de valor absoluto. Esto crea un en el lado derecho de la ecuación debido a .
Paso 3.7.4
Resta de ambos lados de la ecuación.
Paso 3.7.5
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 3.7.5.1
Divide cada término en por .
Paso 3.7.5.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.7.5.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 3.7.5.2.2
Divide por .
Paso 3.7.5.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.7.5.3.1
Simplifica cada término.
Toca para ver más pasos...
Paso 3.7.5.3.1.1
Mueve el negativo del denominador de .
Paso 3.7.5.3.1.2
Reescribe como .
Paso 3.7.5.3.1.3
Divide por .
Paso 3.7.6
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 4
Agrupa los términos de la constante.
Toca para ver más pasos...
Paso 4.1
Simplifica la constante de integración.
Paso 4.2
Combina constantes con el signo más o menos.