Cálculo Ejemplos

Resuelve la Ecuación Diferencial (dy)/(dx)=(y^2-1)/x
Paso 1
Separa las variables.
Toca para ver más pasos...
Paso 1.1
Multiplica ambos lados por .
Paso 1.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.2.1
Cancela el factor común.
Paso 1.2.2
Reescribe la expresión.
Paso 1.3
Reescribe la ecuación.
Paso 2
Integra ambos lados.
Toca para ver más pasos...
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
Integra el lado izquierdo.
Toca para ver más pasos...
Paso 2.2.1
Escribe la fracción mediante la descomposición en fracciones simples.
Toca para ver más pasos...
Paso 2.2.1.1
Descompone la fracción y multiplica por el denominador común.
Toca para ver más pasos...
Paso 2.2.1.1.1
Factoriza la fracción.
Toca para ver más pasos...
Paso 2.2.1.1.1.1
Reescribe como .
Paso 2.2.1.1.1.2
Dado que ambos términos son cuadrados perfectos, factoriza con la fórmula de la diferencia de cuadrados, , donde y .
Paso 2.2.1.1.2
Para cada factor del denominador, crea una nueva fracción con el factor como denominador y un valor desconocido como numerador. Dado que el factor en el denominador es lineal, coloca una sola variable en su lugar .
Paso 2.2.1.1.3
Para cada factor del denominador, crea una nueva fracción con el factor como denominador y un valor desconocido como numerador. Dado que el factor en el denominador es lineal, coloca una sola variable en su lugar .
Paso 2.2.1.1.4
Multiplica cada fracción en la ecuación por el denominador de la expresión original. En este caso, el denominador es .
Paso 2.2.1.1.5
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.2.1.1.5.1
Cancela el factor común.
Paso 2.2.1.1.5.2
Reescribe la expresión.
Paso 2.2.1.1.6
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.2.1.1.6.1
Cancela el factor común.
Paso 2.2.1.1.6.2
Reescribe la expresión.
Paso 2.2.1.1.7
Simplifica cada término.
Toca para ver más pasos...
Paso 2.2.1.1.7.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.2.1.1.7.1.1
Cancela el factor común.
Paso 2.2.1.1.7.1.2
Divide por .
Paso 2.2.1.1.7.2
Aplica la propiedad distributiva.
Paso 2.2.1.1.7.3
Mueve a la izquierda de .
Paso 2.2.1.1.7.4
Reescribe como .
Paso 2.2.1.1.7.5
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.2.1.1.7.5.1
Cancela el factor común.
Paso 2.2.1.1.7.5.2
Divide por .
Paso 2.2.1.1.7.6
Aplica la propiedad distributiva.
Paso 2.2.1.1.7.7
Multiplica por .
Paso 2.2.1.1.8
Mueve .
Paso 2.2.1.2
Crea ecuaciones para las variables de fracción simple y úsalas para establecer un sistema de ecuaciones.
Toca para ver más pasos...
Paso 2.2.1.2.1
Crea una ecuación para las variables de fracción simple al igualar los coeficientes de de cada lado de la ecuación. Para que la ecuación sea igual, los coeficientes equivalentes en cada lado de la ecuación deben ser iguales.
Paso 2.2.1.2.2
Crea una ecuación para las variables de fracción simple al igualar los coeficientes de los términos que no contienen . Para que la ecuación sea igual, los coeficientes equivalentes en cada lado de la ecuación deben ser iguales.
Paso 2.2.1.2.3
Establece el sistema de ecuaciones para obtener los coeficientes de las fracciones parciales.
Paso 2.2.1.3
Resuelve el sistema de ecuaciones.
Toca para ver más pasos...
Paso 2.2.1.3.1
Resuelve en .
Toca para ver más pasos...
Paso 2.2.1.3.1.1
Reescribe la ecuación como .
Paso 2.2.1.3.1.2
Resta de ambos lados de la ecuación.
Paso 2.2.1.3.2
Reemplaza todos los casos de por en cada ecuación.
Toca para ver más pasos...
Paso 2.2.1.3.2.1
Reemplaza todos los casos de en por .
Paso 2.2.1.3.2.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.2.1.3.2.2.1
Simplifica .
Toca para ver más pasos...
Paso 2.2.1.3.2.2.1.1
Multiplica .
Toca para ver más pasos...
Paso 2.2.1.3.2.2.1.1.1
Multiplica por .
Paso 2.2.1.3.2.2.1.1.2
Multiplica por .
Paso 2.2.1.3.2.2.1.2
Suma y .
Paso 2.2.1.3.3
Resuelve en .
Toca para ver más pasos...
Paso 2.2.1.3.3.1
Reescribe la ecuación como .
Paso 2.2.1.3.3.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 2.2.1.3.3.2.1
Divide cada término en por .
Paso 2.2.1.3.3.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.2.1.3.3.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.2.1.3.3.2.2.1.1
Cancela el factor común.
Paso 2.2.1.3.3.2.2.1.2
Divide por .
Paso 2.2.1.3.4
Reemplaza todos los casos de por en cada ecuación.
Toca para ver más pasos...
Paso 2.2.1.3.4.1
Reemplaza todos los casos de en por .
Paso 2.2.1.3.4.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.2.1.3.4.2.1
Multiplica por .
Paso 2.2.1.3.5
Enumera todas las soluciones.
Paso 2.2.1.4
Reemplaza cada uno de los coeficientes de fracción simple en con los valores obtenidos para y .
Paso 2.2.1.5
Simplifica.
Toca para ver más pasos...
Paso 2.2.1.5.1
Multiplica el numerador por la recíproca del denominador.
Paso 2.2.1.5.2
Multiplica por .
Paso 2.2.1.5.3
Mueve a la izquierda de .
Paso 2.2.1.5.4
Multiplica el numerador por la recíproca del denominador.
Paso 2.2.1.5.5
Multiplica por .
Paso 2.2.2
Divide la única integral en varias integrales.
Paso 2.2.3
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.2.4
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.2.5
Sea . Entonces . Reescribe mediante y .
Toca para ver más pasos...
Paso 2.2.5.1
Deja . Obtén .
Toca para ver más pasos...
Paso 2.2.5.1.1
Diferencia .
Paso 2.2.5.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2.5.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.5.1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.5.1.5
Suma y .
Paso 2.2.5.2
Reescribe el problema mediante y .
Paso 2.2.6
La integral de con respecto a es .
Paso 2.2.7
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.2.8
Sea . Entonces . Reescribe mediante y .
Toca para ver más pasos...
Paso 2.2.8.1
Deja . Obtén .
Toca para ver más pasos...
Paso 2.2.8.1.1
Diferencia .
Paso 2.2.8.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2.8.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.8.1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.8.1.5
Suma y .
Paso 2.2.8.2
Reescribe el problema mediante y .
Paso 2.2.9
La integral de con respecto a es .
Paso 2.2.10
Simplifica.
Paso 2.2.11
Vuelve a sustituir para cada variable de sustitución de la integración.
Toca para ver más pasos...
Paso 2.2.11.1
Reemplaza todos los casos de con .
Paso 2.2.11.2
Reemplaza todos los casos de con .
Paso 2.3
La integral de con respecto a es .
Paso 2.4
Agrupa la constante de integración en el lado derecho como .
Paso 3
Resuelve
Toca para ver más pasos...
Paso 3.1
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.1.1
Simplifica cada término.
Toca para ver más pasos...
Paso 3.1.1.1
Combina y .
Paso 3.1.1.2
Combina y .
Paso 3.2
Multiplica cada término en por para eliminar las fracciones.
Toca para ver más pasos...
Paso 3.2.1
Multiplica cada término en por .
Paso 3.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.2.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 3.2.2.1.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.2.2.1.1.1
Mueve el signo menos inicial en al numerador.
Paso 3.2.2.1.1.2
Cancela el factor común.
Paso 3.2.2.1.1.3
Reescribe la expresión.
Paso 3.2.2.1.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.2.2.1.2.1
Cancela el factor común.
Paso 3.2.2.1.2.2
Reescribe la expresión.
Paso 3.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.2.3.1
Simplifica cada término.
Toca para ver más pasos...
Paso 3.2.3.1.1
Mueve a la izquierda de .
Paso 3.2.3.1.2
Mueve a la izquierda de .
Paso 3.3
Mueve todos los términos que contengan un logaritmo al lado izquierdo de la ecuación.
Paso 3.4
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.4.1
Simplifica .
Toca para ver más pasos...
Paso 3.4.1.1
Simplifica cada término.
Toca para ver más pasos...
Paso 3.4.1.1.1
Simplifica al mover dentro del algoritmo.
Paso 3.4.1.1.2
Elimina el valor absoluto en porque las potenciaciones con potencias pares siempre son positivas.
Paso 3.4.1.2
Usa la propiedad del cociente de los logaritmos, .
Paso 3.5
Para resolver , reescribe la ecuación mediante las propiedades de los logaritmos.
Paso 3.6
Reescribe en formato exponencial mediante la definición de un logaritmo. Si y son números reales positivos y , entonces es equivalente a .
Paso 3.7
Resuelve
Toca para ver más pasos...
Paso 3.7.1
Resta el logaritmo natural de ambos lados de la ecuación para eliminar la variable del exponente.
Paso 3.7.2
Expande el lado izquierdo.
Toca para ver más pasos...
Paso 3.7.2.1
Expande ; para ello, mueve fuera del logaritmo.
Paso 3.7.2.2
El logaritmo natural de es .
Paso 3.7.2.3
Multiplica por .
Paso 3.7.3
Mueve todos los términos que contengan un logaritmo al lado izquierdo de la ecuación.
Paso 3.7.4
Usa la propiedad del cociente de los logaritmos, .
Paso 3.7.5
Multiplica el numerador por la recíproca del denominador.
Paso 3.7.6
Combina y .
Paso 3.7.7
Reordena los factores en .
Paso 3.7.8
Para resolver , reescribe la ecuación mediante las propiedades de los logaritmos.
Paso 3.7.9
Reescribe en formato exponencial mediante la definición de un logaritmo. Si y son números reales positivos y , entonces es equivalente a .
Paso 3.7.10
Resuelve
Toca para ver más pasos...
Paso 3.7.10.1
Reescribe la ecuación como .
Paso 3.7.10.2
Multiplica ambos lados por .
Paso 3.7.10.3
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.7.10.3.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.7.10.3.1.1
Cancela el factor común.
Paso 3.7.10.3.1.2
Reescribe la expresión.
Paso 3.7.10.4
Resuelve
Toca para ver más pasos...
Paso 3.7.10.4.1
Reescribe la ecuación como .
Paso 3.7.10.4.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 3.7.10.4.2.1
Divide cada término en por .
Paso 3.7.10.4.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.7.10.4.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.7.10.4.2.2.1.1
Cancela el factor común.
Paso 3.7.10.4.2.2.1.2
Divide por .
Paso 3.7.10.4.3
Reescribe la ecuación de valor absoluto como cuatro ecuaciones sin barras del valor absoluto.
Paso 3.7.10.4.4
Después de simplificar, solo hay dos ecuaciones únicas por resolver.
Paso 3.7.10.4.5
Resuelve en .
Toca para ver más pasos...
Paso 3.7.10.4.5.1
Multiplica ambos lados por .
Paso 3.7.10.4.5.2
Simplifica.
Toca para ver más pasos...
Paso 3.7.10.4.5.2.1
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.7.10.4.5.2.1.1
Simplifica .
Toca para ver más pasos...
Paso 3.7.10.4.5.2.1.1.1
Aplica la propiedad distributiva.
Paso 3.7.10.4.5.2.1.1.2
Reescribe como .
Paso 3.7.10.4.5.2.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.7.10.4.5.2.2.1
Simplifica .
Toca para ver más pasos...
Paso 3.7.10.4.5.2.2.1.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.7.10.4.5.2.2.1.1.1
Cancela el factor común.
Paso 3.7.10.4.5.2.2.1.1.2
Reescribe la expresión.
Paso 3.7.10.4.5.2.2.1.2
Aplica la propiedad distributiva.
Paso 3.7.10.4.5.2.2.1.3
Multiplica por .
Paso 3.7.10.4.5.3
Resuelve
Toca para ver más pasos...
Paso 3.7.10.4.5.3.1
Resta de ambos lados de la ecuación.
Paso 3.7.10.4.5.3.2
Suma a ambos lados de la ecuación.
Paso 3.7.10.4.5.3.3
Factoriza de .
Toca para ver más pasos...
Paso 3.7.10.4.5.3.3.1
Factoriza de .
Paso 3.7.10.4.5.3.3.2
Factoriza de .
Paso 3.7.10.4.5.3.3.3
Factoriza de .
Paso 3.7.10.4.5.3.4
Reescribe como .
Paso 3.7.10.4.5.3.5
Factoriza.
Toca para ver más pasos...
Paso 3.7.10.4.5.3.5.1
Dado que ambos términos son cuadrados perfectos, factoriza con la fórmula de la diferencia de cuadrados, , donde y .
Paso 3.7.10.4.5.3.5.2
Elimina los paréntesis innecesarios.
Paso 3.7.10.4.5.3.6
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 3.7.10.4.5.3.6.1
Divide cada término en por .
Paso 3.7.10.4.5.3.6.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.7.10.4.5.3.6.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.7.10.4.5.3.6.2.1.1
Cancela el factor común.
Paso 3.7.10.4.5.3.6.2.1.2
Reescribe la expresión.
Paso 3.7.10.4.5.3.6.2.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.7.10.4.5.3.6.2.2.1
Cancela el factor común.
Paso 3.7.10.4.5.3.6.2.2.2
Divide por .
Paso 3.7.10.4.6
Resuelve en .
Toca para ver más pasos...
Paso 3.7.10.4.6.1
Multiplica ambos lados por .
Paso 3.7.10.4.6.2
Simplifica.
Toca para ver más pasos...
Paso 3.7.10.4.6.2.1
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.7.10.4.6.2.1.1
Simplifica .
Toca para ver más pasos...
Paso 3.7.10.4.6.2.1.1.1
Aplica la propiedad distributiva.
Paso 3.7.10.4.6.2.1.1.2
Reescribe como .
Paso 3.7.10.4.6.2.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.7.10.4.6.2.2.1
Simplifica .
Toca para ver más pasos...
Paso 3.7.10.4.6.2.2.1.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.7.10.4.6.2.2.1.1.1
Mueve el signo menos inicial en al numerador.
Paso 3.7.10.4.6.2.2.1.1.2
Cancela el factor común.
Paso 3.7.10.4.6.2.2.1.1.3
Reescribe la expresión.
Paso 3.7.10.4.6.2.2.1.2
Aplica la propiedad distributiva.
Paso 3.7.10.4.6.2.2.1.3
Multiplica por .
Paso 3.7.10.4.6.3
Resuelve
Toca para ver más pasos...
Paso 3.7.10.4.6.3.1
Suma a ambos lados de la ecuación.
Paso 3.7.10.4.6.3.2
Suma a ambos lados de la ecuación.
Paso 3.7.10.4.6.3.3
Factoriza de .
Toca para ver más pasos...
Paso 3.7.10.4.6.3.3.1
Factoriza de .
Paso 3.7.10.4.6.3.3.2
Factoriza de .
Paso 3.7.10.4.6.3.3.3
Factoriza de .
Paso 3.7.10.4.6.3.4
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 3.7.10.4.6.3.4.1
Divide cada término en por .
Paso 3.7.10.4.6.3.4.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.7.10.4.6.3.4.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.7.10.4.6.3.4.2.1.1
Cancela el factor común.
Paso 3.7.10.4.6.3.4.2.1.2
Divide por .
Paso 3.7.10.4.6.3.4.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.7.10.4.6.3.4.3.1
Combina los numeradores sobre el denominador común.
Paso 3.7.10.4.6.3.4.3.2
Simplifica el numerador.
Toca para ver más pasos...
Paso 3.7.10.4.6.3.4.3.2.1
Reescribe como .
Paso 3.7.10.4.6.3.4.3.2.2
Reordena y .
Paso 3.7.10.4.6.3.4.3.2.3
Dado que ambos términos son cuadrados perfectos, factoriza con la fórmula de la diferencia de cuadrados, , donde y .
Paso 3.7.10.4.7
Enumera todas las soluciones.
Paso 4
Simplifica la constante de integración.