Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Diferencia con respecto a .
Paso 1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.3
Evalúa .
Paso 1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.3
Multiplica por .
Paso 1.4
Diferencia con la regla de la constante.
Paso 1.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.4.2
Suma y .
Paso 2
Paso 2.1
Diferencia con respecto a .
Paso 2.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.4
Multiplica por .
Paso 3
Paso 3.1
Sustituye por y para .
Paso 3.2
Como el lado izquierdo no es igual al lado derecho, la ecuación no es una identidad.
no es una identidad.
no es una identidad.
Paso 4
Paso 4.1
Sustituye por .
Paso 4.2
Sustituye por .
Paso 4.3
Sustituye por .
Paso 4.3.1
Sustituye por .
Paso 4.3.2
Simplifica el numerador.
Paso 4.3.2.1
Factoriza de .
Paso 4.3.2.1.1
Factoriza de .
Paso 4.3.2.1.2
Factoriza de .
Paso 4.3.2.1.3
Factoriza de .
Paso 4.3.2.2
Multiplica por .
Paso 4.3.2.3
Resta de .
Paso 4.3.3
Multiplica por .
Paso 4.3.4
Cancela el factor común de .
Paso 4.3.4.1
Cancela el factor común.
Paso 4.3.4.2
Reescribe la expresión.
Paso 4.4
Obtén el factor integrador .
Paso 5
Paso 5.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 5.2
La integral de con respecto a es .
Paso 5.3
Simplifica.
Paso 5.4
Simplifica cada término.
Paso 5.4.1
Simplifica al mover dentro del algoritmo.
Paso 5.4.2
Potencia y logaritmo son funciones inversas.
Paso 6
Paso 6.1
Multiplica por .
Paso 6.2
Aplica la propiedad distributiva.
Paso 6.3
Multiplica por sumando los exponentes.
Paso 6.3.1
Mueve .
Paso 6.3.2
Multiplica por .
Paso 6.3.2.1
Eleva a la potencia de .
Paso 6.3.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 6.3.3
Escribe como una fracción con un denominador común.
Paso 6.3.4
Combina los numeradores sobre el denominador común.
Paso 6.3.5
Suma y .
Paso 6.4
Multiplica por .
Paso 6.5
Multiplica por sumando los exponentes.
Paso 6.5.1
Mueve .
Paso 6.5.2
Multiplica por .
Paso 6.5.2.1
Eleva a la potencia de .
Paso 6.5.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 6.5.3
Escribe como una fracción con un denominador común.
Paso 6.5.4
Combina los numeradores sobre el denominador común.
Paso 6.5.5
Suma y .
Paso 6.6
Reordena los factores en .
Paso 7
Establece igual a la integral de .
Paso 8
Paso 8.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 8.2
Según la regla de la potencia, la integral de con respecto a es .
Paso 8.3
Simplifica la respuesta.
Paso 8.3.1
Reescribe como .
Paso 8.3.2
Simplifica.
Paso 8.3.2.1
Combina y .
Paso 8.3.2.2
Combina y .
Paso 8.3.2.3
Mueve a la izquierda de .
Paso 8.3.2.4
Multiplica por .
Paso 8.3.2.5
Combina y .
Paso 8.3.3
Reordena los términos.
Paso 9
Como la integral de , contendrá una constante de integración, podemos reemplazar con .
Paso 10
Establece .
Paso 11
Paso 11.1
Diferencia con respecto a .
Paso 11.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 11.3
Evalúa .
Paso 11.3.1
Combina y .
Paso 11.3.2
Combina y .
Paso 11.3.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 11.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 11.3.5
Para escribir como una fracción con un denominador común, multiplica por .
Paso 11.3.6
Combina y .
Paso 11.3.7
Combina los numeradores sobre el denominador común.
Paso 11.3.8
Simplifica el numerador.
Paso 11.3.8.1
Multiplica por .
Paso 11.3.8.2
Resta de .
Paso 11.3.9
Combina y .
Paso 11.3.10
Multiplica por .
Paso 11.3.11
Multiplica por .
Paso 11.3.12
Multiplica por .
Paso 11.3.13
Factoriza de .
Paso 11.3.14
Cancela los factores comunes.
Paso 11.3.14.1
Factoriza de .
Paso 11.3.14.2
Cancela el factor común.
Paso 11.3.14.3
Reescribe la expresión.
Paso 11.3.14.4
Divide por .
Paso 11.4
Diferencia con la regla de la función que establece que la derivada de es .
Paso 11.5
Simplifica.
Paso 11.5.1
Reordena los términos.
Paso 11.5.2
Reordena los factores en .
Paso 12
Paso 12.1
Resuelve
Paso 12.1.1
Combina los términos opuestos en .
Paso 12.1.1.1
Resta de .
Paso 12.1.1.2
Suma y .
Paso 12.1.2
Suma a ambos lados de la ecuación.
Paso 13
Paso 13.1
Integra ambos lados de .
Paso 13.2
Evalúa .
Paso 13.3
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 13.4
Según la regla de la potencia, la integral de con respecto a es .
Paso 13.5
Simplifica la respuesta.
Paso 13.5.1
Reescribe como .
Paso 13.5.2
Simplifica.
Paso 13.5.2.1
Combina y .
Paso 13.5.2.2
Multiplica por .
Paso 14
Sustituye por en .
Paso 15
Paso 15.1
Simplifica cada término.
Paso 15.1.1
Combina y .
Paso 15.1.2
Combina y .
Paso 15.1.3
Combina y .
Paso 15.2
Reordena los factores en .