Cálculo Ejemplos

Resuelve la Ecuación Diferencial (dy)/(dx)-2xy+8x=0
Paso 1
Separa las variables.
Toca para ver más pasos...
Paso 1.1
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Toca para ver más pasos...
Paso 1.1.1
Suma a ambos lados de la ecuación.
Paso 1.1.2
Resta de ambos lados de la ecuación.
Paso 1.2
Factoriza de .
Toca para ver más pasos...
Paso 1.2.1
Factoriza de .
Paso 1.2.2
Factoriza de .
Paso 1.2.3
Factoriza de .
Paso 1.3
Multiplica ambos lados por .
Paso 1.4
Simplifica.
Toca para ver más pasos...
Paso 1.4.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 1.4.2
Combina y .
Paso 1.4.3
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.4.3.1
Factoriza de .
Paso 1.4.3.2
Cancela el factor común.
Paso 1.4.3.3
Reescribe la expresión.
Paso 1.5
Reescribe la ecuación.
Paso 2
Integra ambos lados.
Toca para ver más pasos...
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
Integra el lado izquierdo.
Toca para ver más pasos...
Paso 2.2.1
Sea . Entonces . Reescribe mediante y .
Toca para ver más pasos...
Paso 2.2.1.1
Deja . Obtén .
Toca para ver más pasos...
Paso 2.2.1.1.1
Diferencia .
Paso 2.2.1.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2.1.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.1.1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.1.1.5
Suma y .
Paso 2.2.1.2
Reescribe el problema mediante y .
Paso 2.2.2
La integral de con respecto a es .
Paso 2.2.3
Reemplaza todos los casos de con .
Paso 2.3
Integra el lado derecho.
Toca para ver más pasos...
Paso 2.3.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.2
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.3.3
Simplifica la respuesta.
Toca para ver más pasos...
Paso 2.3.3.1
Reescribe como .
Paso 2.3.3.2
Simplifica.
Toca para ver más pasos...
Paso 2.3.3.2.1
Combina y .
Paso 2.3.3.2.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.3.3.2.2.1
Cancela el factor común.
Paso 2.3.3.2.2.2
Reescribe la expresión.
Paso 2.3.3.2.3
Multiplica por .
Paso 2.4
Agrupa la constante de integración en el lado derecho como .
Paso 3
Resuelve
Toca para ver más pasos...
Paso 3.1
Para resolver , reescribe la ecuación mediante las propiedades de los logaritmos.
Paso 3.2
Reescribe en formato exponencial mediante la definición de un logaritmo. Si y son números reales positivos y , entonces es equivalente a .
Paso 3.3
Resuelve
Toca para ver más pasos...
Paso 3.3.1
Reescribe la ecuación como .
Paso 3.3.2
Elimina el término de valor absoluto. Esto crea un en el lado derecho de la ecuación debido a .
Paso 3.3.3
Suma a ambos lados de la ecuación.
Paso 4
Agrupa los términos de la constante.
Toca para ver más pasos...
Paso 4.1
Reescribe como .
Paso 4.2
Reordena y .
Paso 4.3
Combina constantes con el signo más o menos.