Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Multiplica ambos lados por .
Paso 1.2
Cancela el factor común de .
Paso 1.2.1
Cancela el factor común.
Paso 1.2.2
Reescribe la expresión.
Paso 1.3
Reescribe la ecuación.
Paso 2
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
La integral de con respecto a es .
Paso 2.3
Integra el lado derecho.
Paso 2.3.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.2
Sea . Entonces , de modo que . Reescribe mediante y .
Paso 2.3.2.1
Deja . Obtén .
Paso 2.3.2.1.1
Diferencia .
Paso 2.3.2.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.2.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.2.1.4
Multiplica por .
Paso 2.3.2.2
Reescribe el problema mediante y .
Paso 2.3.3
Combina y .
Paso 2.3.4
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.5
Simplifica.
Paso 2.3.5.1
Combina y .
Paso 2.3.5.2
Cancela el factor común de y .
Paso 2.3.5.2.1
Factoriza de .
Paso 2.3.5.2.2
Cancela los factores comunes.
Paso 2.3.5.2.2.1
Factoriza de .
Paso 2.3.5.2.2.2
Cancela el factor común.
Paso 2.3.5.2.2.3
Reescribe la expresión.
Paso 2.3.5.2.2.4
Divide por .
Paso 2.3.6
La integral de con respecto a es .
Paso 2.3.7
Simplifica.
Paso 2.3.8
Reemplaza todos los casos de con .
Paso 2.4
Agrupa la constante de integración en el lado derecho como .
Paso 3
Paso 3.1
Resta el logaritmo natural de ambos lados de la ecuación para eliminar la variable del exponente.
Paso 3.2
Expande el lado izquierdo.
Paso 3.2.1
Expande ; para ello, mueve fuera del logaritmo.
Paso 3.2.2
El logaritmo natural de es .
Paso 3.2.3
Multiplica por .