Cálculo Ejemplos

Resuelve la Ecuación Diferencial 6x^2dx-2(yd)y=0
Paso 1
Resta de ambos lados de la ecuación.
Paso 2
Integra ambos lados.
Toca para ver más pasos...
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
Integra el lado izquierdo.
Toca para ver más pasos...
Paso 2.2.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.2.2
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.2.3
Simplifica la respuesta.
Toca para ver más pasos...
Paso 2.2.3.1
Reescribe como .
Paso 2.2.3.2
Simplifica.
Toca para ver más pasos...
Paso 2.2.3.2.1
Combina y .
Paso 2.2.3.2.2
Cancela el factor común de y .
Toca para ver más pasos...
Paso 2.2.3.2.2.1
Factoriza de .
Paso 2.2.3.2.2.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 2.2.3.2.2.2.1
Factoriza de .
Paso 2.2.3.2.2.2.2
Cancela el factor común.
Paso 2.2.3.2.2.2.3
Reescribe la expresión.
Paso 2.2.3.2.2.2.4
Divide por .
Paso 2.3
Integra el lado derecho.
Toca para ver más pasos...
Paso 2.3.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.2
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.3.3
Simplifica la respuesta.
Toca para ver más pasos...
Paso 2.3.3.1
Reescribe como .
Paso 2.3.3.2
Simplifica.
Toca para ver más pasos...
Paso 2.3.3.2.1
Combina y .
Paso 2.3.3.2.2
Cancela el factor común de y .
Toca para ver más pasos...
Paso 2.3.3.2.2.1
Factoriza de .
Paso 2.3.3.2.2.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 2.3.3.2.2.2.1
Factoriza de .
Paso 2.3.3.2.2.2.2
Cancela el factor común.
Paso 2.3.3.2.2.2.3
Reescribe la expresión.
Paso 2.3.3.2.2.2.4
Divide por .
Paso 2.4
Agrupa la constante de integración en el lado derecho como .
Paso 3
Resuelve
Toca para ver más pasos...
Paso 3.1
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 3.1.1
Divide cada término en por .
Paso 3.1.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.1.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 3.1.2.2
Divide por .
Paso 3.1.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.1.3.1
Simplifica cada término.
Toca para ver más pasos...
Paso 3.1.3.1.1
Mueve el negativo del denominador de .
Paso 3.1.3.1.2
Reescribe como .
Paso 3.1.3.1.3
Multiplica por .
Paso 3.1.3.1.4
Mueve el negativo del denominador de .
Paso 3.1.3.1.5
Reescribe como .
Paso 3.2
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 3.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Toca para ver más pasos...
Paso 3.3.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 3.3.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 3.3.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 4
Simplifica la constante de integración.