Ingresa un problema...
Cálculo Ejemplos
,
Paso 1
Reescribe la ecuación.
Paso 2
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
Aplica la regla de la constante.
Paso 2.3
Integra el lado derecho.
Paso 2.3.1
Divide la única integral en varias integrales.
Paso 2.3.2
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.3
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.3.4
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.5
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.3.6
Simplifica.
Paso 2.3.6.1
Simplifica.
Paso 2.3.6.2
Simplifica.
Paso 2.3.6.2.1
Combina y .
Paso 2.3.6.2.2
Cancela el factor común de y .
Paso 2.3.6.2.2.1
Factoriza de .
Paso 2.3.6.2.2.2
Cancela los factores comunes.
Paso 2.3.6.2.2.2.1
Factoriza de .
Paso 2.3.6.2.2.2.2
Cancela el factor común.
Paso 2.3.6.2.2.2.3
Reescribe la expresión.
Paso 2.3.6.2.2.2.4
Divide por .
Paso 2.3.6.2.3
Combina y .
Paso 2.3.6.2.4
Cancela el factor común de y .
Paso 2.3.6.2.4.1
Factoriza de .
Paso 2.3.6.2.4.2
Cancela los factores comunes.
Paso 2.3.6.2.4.2.1
Factoriza de .
Paso 2.3.6.2.4.2.2
Cancela el factor común.
Paso 2.3.6.2.4.2.3
Reescribe la expresión.
Paso 2.3.6.2.4.2.4
Divide por .
Paso 2.3.7
Reordena los términos.
Paso 2.4
Agrupa la constante de integración en el lado derecho como .
Paso 3
Usa la condición inicial para obtener el valor de mediante la sustitución de por y de por en .
Paso 4
Paso 4.1
Reescribe la ecuación como .
Paso 4.2
Simplifica .
Paso 4.2.1
Simplifica cada término.
Paso 4.2.1.1
Uno elevado a cualquier potencia es uno.
Paso 4.2.1.2
Multiplica por .
Paso 4.2.1.3
Uno elevado a cualquier potencia es uno.
Paso 4.2.1.4
Multiplica por .
Paso 4.2.2
Suma y .
Paso 4.3
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Paso 4.3.1
Resta de ambos lados de la ecuación.
Paso 4.3.2
Resta de .
Paso 5
Paso 5.1
Sustituye por .