Cálculo Ejemplos

Resuelve la Ecuación Diferencial y^-1dy+ye^(cos(x))sin(x)dx=0
Paso 1
Resta de ambos lados de la ecuación.
Paso 2
Multiplica ambos lados por .
Paso 3
Simplifica.
Toca para ver más pasos...
Paso 3.1
Reescribe la expresión mediante la regla del exponente negativo .
Paso 3.2
Multiplica .
Toca para ver más pasos...
Paso 3.2.1
Multiplica por .
Paso 3.2.2
Eleva a la potencia de .
Paso 3.2.3
Eleva a la potencia de .
Paso 3.2.4
Usa la regla de la potencia para combinar exponentes.
Paso 3.2.5
Suma y .
Paso 3.3
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.4
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.4.1
Mueve el signo menos inicial en al numerador.
Paso 3.4.2
Factoriza de .
Paso 3.4.3
Cancela el factor común.
Paso 3.4.4
Reescribe la expresión.
Paso 4
Integra ambos lados.
Toca para ver más pasos...
Paso 4.1
Establece una integral en cada lado.
Paso 4.2
Integra el lado izquierdo.
Toca para ver más pasos...
Paso 4.2.1
Aplica reglas básicas de exponentes.
Toca para ver más pasos...
Paso 4.2.1.1
Mueve fuera del denominador mediante su elevación a la potencia .
Paso 4.2.1.2
Multiplica los exponentes en .
Toca para ver más pasos...
Paso 4.2.1.2.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 4.2.1.2.2
Multiplica por .
Paso 4.2.2
Según la regla de la potencia, la integral de con respecto a es .
Paso 4.2.3
Reescribe como .
Paso 4.3
Integra el lado derecho.
Toca para ver más pasos...
Paso 4.3.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 4.3.2
Sea . Entonces , de modo que . Reescribe mediante y .
Toca para ver más pasos...
Paso 4.3.2.1
Deja . Obtén .
Toca para ver más pasos...
Paso 4.3.2.1.1
Diferencia .
Paso 4.3.2.1.2
La derivada de con respecto a es .
Paso 4.3.2.2
Reescribe el problema mediante y .
Paso 4.3.3
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 4.3.4
Simplifica.
Toca para ver más pasos...
Paso 4.3.4.1
Multiplica por .
Paso 4.3.4.2
Multiplica por .
Paso 4.3.5
La integral de con respecto a es .
Paso 4.3.6
Reemplaza todos los casos de con .
Paso 4.4
Agrupa la constante de integración en el lado derecho como .
Paso 5
Resuelve
Toca para ver más pasos...
Paso 5.1
Obtén el mcd de los términos en la ecuación.
Toca para ver más pasos...
Paso 5.1.1
La obtención del mcd de una lista de valores es lo mismo que obtener el MCM de los denominadores de esos valores.
Paso 5.1.2
El mínimo común múltiplo (MCM) de una y cualquier expresión es la expresión.
Paso 5.2
Multiplica cada término en por para eliminar las fracciones.
Toca para ver más pasos...
Paso 5.2.1
Multiplica cada término en por .
Paso 5.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 5.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 5.2.2.1.1
Mueve el signo menos inicial en al numerador.
Paso 5.2.2.1.2
Cancela el factor común.
Paso 5.2.2.1.3
Reescribe la expresión.
Paso 5.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 5.2.3.1
Reordena los factores en .
Paso 5.3
Resuelve la ecuación.
Toca para ver más pasos...
Paso 5.3.1
Reescribe la ecuación como .
Paso 5.3.2
Factoriza de .
Toca para ver más pasos...
Paso 5.3.2.1
Factoriza de .
Paso 5.3.2.2
Factoriza de .
Paso 5.3.3
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 5.3.3.1
Divide cada término en por .
Paso 5.3.3.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 5.3.3.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 5.3.3.2.1.1
Cancela el factor común.
Paso 5.3.3.2.1.2
Divide por .
Paso 5.3.3.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 5.3.3.3.1
Mueve el negativo al frente de la fracción.