Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Multiplica ambos lados por .
Paso 1.2
Cancela el factor común de .
Paso 1.2.1
Factoriza de .
Paso 1.2.2
Cancela el factor común.
Paso 1.2.3
Reescribe la expresión.
Paso 1.3
Reescribe la ecuación.
Paso 2
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.3
Integra el lado derecho.
Paso 2.3.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.2
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.3.3
Simplifica la respuesta.
Paso 2.3.3.1
Reescribe como .
Paso 2.3.3.2
Simplifica.
Paso 2.3.3.2.1
Multiplica por .
Paso 2.3.3.2.2
Multiplica por .
Paso 2.3.3.2.3
Cancela el factor común de y .
Paso 2.3.3.2.3.1
Factoriza de .
Paso 2.3.3.2.3.2
Cancela los factores comunes.
Paso 2.3.3.2.3.2.1
Factoriza de .
Paso 2.3.3.2.3.2.2
Cancela el factor común.
Paso 2.3.3.2.3.2.3
Reescribe la expresión.
Paso 2.4
Agrupa la constante de integración en el lado derecho como .
Paso 3
Paso 3.1
Multiplica ambos lados de la ecuación por .
Paso 3.2
Simplifica ambos lados de la ecuación.
Paso 3.2.1
Simplifica el lado izquierdo.
Paso 3.2.1.1
Simplifica .
Paso 3.2.1.1.1
Combina y .
Paso 3.2.1.1.2
Cancela el factor común de .
Paso 3.2.1.1.2.1
Cancela el factor común.
Paso 3.2.1.1.2.2
Reescribe la expresión.
Paso 3.2.2
Simplifica el lado derecho.
Paso 3.2.2.1
Simplifica .
Paso 3.2.2.1.1
Combina y .
Paso 3.2.2.1.2
Aplica la propiedad distributiva.
Paso 3.2.2.1.3
Cancela el factor común de .
Paso 3.2.2.1.3.1
Cancela el factor común.
Paso 3.2.2.1.3.2
Reescribe la expresión.
Paso 3.3
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 4
Simplifica la constante de integración.