Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Multiplica ambos lados por .
Paso 1.2
Cancela el factor común de .
Paso 1.2.1
Cancela el factor común.
Paso 1.2.2
Reescribe la expresión.
Paso 1.3
Reescribe la ecuación.
Paso 2
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.3
Integra el lado derecho.
Paso 2.3.1
Sea . Entonces , de modo que . Reescribe mediante y .
Paso 2.3.1.1
Deja . Obtén .
Paso 2.3.1.1.1
Diferencia .
Paso 2.3.1.1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.1.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.1.1.4
Multiplica por .
Paso 2.3.1.2
Reescribe el problema mediante y .
Paso 2.3.2
Combina y .
Paso 2.3.3
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.4
La integral de con respecto a es .
Paso 2.3.5
Simplifica.
Paso 2.3.6
Reemplaza todos los casos de con .
Paso 2.4
Agrupa la constante de integración en el lado derecho como .
Paso 3
Paso 3.1
Multiplica ambos lados de la ecuación por .
Paso 3.2
Simplifica ambos lados de la ecuación.
Paso 3.2.1
Simplifica el lado izquierdo.
Paso 3.2.1.1
Simplifica .
Paso 3.2.1.1.1
Combina y .
Paso 3.2.1.1.2
Cancela el factor común de .
Paso 3.2.1.1.2.1
Cancela el factor común.
Paso 3.2.1.1.2.2
Reescribe la expresión.
Paso 3.2.2
Simplifica el lado derecho.
Paso 3.2.2.1
Simplifica .
Paso 3.2.2.1.1
Combina y .
Paso 3.2.2.1.2
Aplica la propiedad distributiva.
Paso 3.2.2.1.3
Cancela el factor común de .
Paso 3.2.2.1.3.1
Cancela el factor común.
Paso 3.2.2.1.3.2
Reescribe la expresión.
Paso 3.3
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 3.4
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 3.4.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 3.4.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 3.4.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 4
Simplifica la constante de integración.