Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Factoriza.
Paso 1.1.1
Factoriza el máximo común divisor de cada grupo.
Paso 1.1.1.1
Agrupa los dos primeros términos y los dos últimos términos.
Paso 1.1.1.2
Factoriza el máximo común divisor (MCD) de cada grupo.
Paso 1.1.2
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Paso 1.2
Multiplica ambos lados por .
Paso 1.3
Cancela el factor común de .
Paso 1.3.1
Factoriza de .
Paso 1.3.2
Cancela el factor común.
Paso 1.3.3
Reescribe la expresión.
Paso 1.4
Reescribe la ecuación.
Paso 2
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
Integra el lado izquierdo.
Paso 2.2.1
Sea . Entonces , de modo que . Reescribe mediante y .
Paso 2.2.1.1
Deja . Obtén .
Paso 2.2.1.1.1
Reescribe.
Paso 2.2.1.1.2
Divide por .
Paso 2.2.1.2
Reescribe el problema mediante y .
Paso 2.2.2
Divide la fracción en varias fracciones.
Paso 2.2.3
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.2.4
La integral de con respecto a es .
Paso 2.2.5
Simplifica.
Paso 2.2.6
Reemplaza todos los casos de con .
Paso 2.3
Integra el lado derecho.
Paso 2.3.1
Divide la única integral en varias integrales.
Paso 2.3.2
Aplica la regla de la constante.
Paso 2.3.3
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.4
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.3.5
Simplifica.
Paso 2.3.6
Reordena los términos.
Paso 2.4
Agrupa la constante de integración en el lado derecho como .
Paso 3
Paso 3.1
Divide cada término en por y simplifica.
Paso 3.1.1
Divide cada término en por .
Paso 3.1.2
Simplifica el lado izquierdo.
Paso 3.1.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 3.1.2.2
Divide por .
Paso 3.1.3
Simplifica el lado derecho.
Paso 3.1.3.1
Simplifica cada término.
Paso 3.1.3.1.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 3.1.3.1.2
Divide por .
Paso 3.1.3.1.3
Combina y .
Paso 3.1.3.1.4
Mueve el negativo del denominador de .
Paso 3.1.3.1.5
Reescribe como .
Paso 3.1.3.1.6
Multiplica por .
Paso 3.1.3.1.7
Mueve el negativo del denominador de .
Paso 3.1.3.1.8
Reescribe como .
Paso 3.2
Para resolver , reescribe la ecuación mediante las propiedades de los logaritmos.
Paso 3.3
Reescribe en formato exponencial mediante la definición de un logaritmo. Si y son números reales positivos y , entonces es equivalente a .
Paso 3.4
Resuelve
Paso 3.4.1
Reescribe la ecuación como .
Paso 3.4.2
Elimina el término de valor absoluto. Esto crea un en el lado derecho de la ecuación debido a .
Paso 3.4.3
Resta de ambos lados de la ecuación.
Paso 3.4.4
Divide cada término en por y simplifica.
Paso 3.4.4.1
Divide cada término en por .
Paso 3.4.4.2
Simplifica el lado izquierdo.
Paso 3.4.4.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 3.4.4.2.2
Divide por .
Paso 3.4.4.3
Simplifica el lado derecho.
Paso 3.4.4.3.1
Para escribir como una fracción con un denominador común, multiplica por .
Paso 3.4.4.3.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 3.4.4.3.3
Escribe cada expresión con un denominador común de , mediante la multiplicación de cada uno por un factor adecuado de .
Paso 3.4.4.3.3.1
Multiplica por .
Paso 3.4.4.3.3.2
Multiplica por .
Paso 3.4.4.3.3.3
Multiplica por .
Paso 3.4.4.3.3.4
Multiplica por .
Paso 3.4.4.3.4
Combina los numeradores sobre el denominador común.
Paso 3.4.4.3.5
Simplifica cada término.
Paso 3.4.4.3.5.1
Mueve a la izquierda de .
Paso 3.4.4.3.5.2
Reescribe como .
Paso 3.4.4.3.5.3
Multiplica por .
Paso 3.4.4.3.6
Divide por .
Paso 4
Paso 4.1
Simplifica la constante de integración.
Paso 4.2
Reescribe como .
Paso 4.3
Reordena y .
Paso 4.4
Combina constantes con el signo más o menos.