Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Reagrupa los factores.
Paso 1.2
Multiplica ambos lados por .
Paso 1.3
Simplifica.
Paso 1.3.1
Combinar.
Paso 1.3.2
Cancela el factor común de .
Paso 1.3.2.1
Factoriza de .
Paso 1.3.2.2
Cancela el factor común.
Paso 1.3.2.3
Reescribe la expresión.
Paso 1.3.3
Multiplica por .
Paso 1.4
Reescribe la ecuación.
Paso 2
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
Integra el lado izquierdo.
Paso 2.2.1
Sea . Entonces , de modo que . Reescribe mediante y .
Paso 2.2.1.1
Deja . Obtén .
Paso 2.2.1.1.1
Diferencia .
Paso 2.2.1.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2.1.1.3
Evalúa .
Paso 2.2.1.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.1.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.2.1.1.3.3
Multiplica por .
Paso 2.2.1.1.4
Diferencia con la regla de la constante.
Paso 2.2.1.1.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.1.1.4.2
Suma y .
Paso 2.2.1.2
Reescribe el problema mediante y .
Paso 2.2.2
Combina y .
Paso 2.2.3
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.2.4
La integral de con respecto a es .
Paso 2.2.5
Simplifica.
Paso 2.2.6
Reemplaza todos los casos de con .
Paso 2.3
Integra el lado derecho.
Paso 2.3.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.2
Aplica reglas básicas de exponentes.
Paso 2.3.2.1
Mueve fuera del denominador mediante su elevación a la potencia .
Paso 2.3.2.2
Multiplica los exponentes en .
Paso 2.3.2.2.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.3.2.2.2
Multiplica por .
Paso 2.3.3
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.3.4
Simplifica la respuesta.
Paso 2.3.4.1
Reescribe como .
Paso 2.3.4.2
Simplifica.
Paso 2.3.4.2.1
Multiplica por .
Paso 2.3.4.2.2
Combina y .
Paso 2.3.4.2.3
Mueve el negativo al frente de la fracción.
Paso 2.4
Agrupa la constante de integración en el lado derecho como .
Paso 3
Paso 3.1
Multiplica ambos lados de la ecuación por .
Paso 3.2
Simplifica ambos lados de la ecuación.
Paso 3.2.1
Simplifica el lado izquierdo.
Paso 3.2.1.1
Simplifica .
Paso 3.2.1.1.1
Combina y .
Paso 3.2.1.1.2
Cancela el factor común de .
Paso 3.2.1.1.2.1
Cancela el factor común.
Paso 3.2.1.1.2.2
Reescribe la expresión.
Paso 3.2.2
Simplifica el lado derecho.
Paso 3.2.2.1
Simplifica .
Paso 3.2.2.1.1
Aplica la propiedad distributiva.
Paso 3.2.2.1.2
Multiplica .
Paso 3.2.2.1.2.1
Multiplica por .
Paso 3.2.2.1.2.2
Combina y .
Paso 3.2.2.1.2.3
Multiplica por .
Paso 3.2.2.1.3
Mueve el negativo al frente de la fracción.
Paso 3.3
Resta el logaritmo natural de ambos lados de la ecuación para eliminar la variable del exponente.
Paso 3.4
Expande el lado izquierdo.
Paso 3.4.1
Expande ; para ello, mueve fuera del logaritmo.
Paso 3.4.2
El logaritmo natural de es .
Paso 3.4.3
Multiplica por .
Paso 3.5
Resta de ambos lados de la ecuación.
Paso 3.6
Divide cada término en por y simplifica.
Paso 3.6.1
Divide cada término en por .
Paso 3.6.2
Simplifica el lado izquierdo.
Paso 3.6.2.1
Cancela el factor común de .
Paso 3.6.2.1.1
Cancela el factor común.
Paso 3.6.2.1.2
Divide por .
Paso 3.6.3
Simplifica el lado derecho.
Paso 3.6.3.1
Divide por .
Paso 4
Simplifica la constante de integración.