Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Diferencia con respecto a .
Paso 1.2
Diferencia.
Paso 1.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.2.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3
Evalúa .
Paso 1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.2
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 1.3.2.1
Para aplicar la regla de la cadena, establece como .
Paso 1.3.2.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 1.3.2.3
Reemplaza todos los casos de con .
Paso 1.3.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.5
Multiplica por .
Paso 1.3.6
Mueve a la izquierda de .
Paso 1.3.7
Reescribe como .
Paso 1.3.8
Multiplica por .
Paso 1.4
Simplifica.
Paso 1.4.1
Resta de .
Paso 1.4.2
Reordena los factores de .
Paso 1.4.3
Reordena los factores en .
Paso 2
Paso 2.1
Diferencia con respecto a .
Paso 2.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.3
Diferencia con la regla exponencial, que establece que es donde = .
Paso 2.4
Diferencia con la regla de la constante.
Paso 2.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.4.2
Suma y .
Paso 3
Paso 3.1
Sustituye por y para .
Paso 3.2
Como el lado izquierdo no es igual al lado derecho, la ecuación no es una identidad.
no es una identidad.
no es una identidad.
Paso 4
Paso 4.1
Sustituye por .
Paso 4.2
Sustituye por .
Paso 4.3
Sustituye por .
Paso 4.3.1
Sustituye por .
Paso 4.3.2
Multiplica por .
Paso 4.3.3
Sustituye por .
Paso 4.3.3.1
Cancela el factor común.
Paso 4.3.3.2
Reescribe la expresión.
Paso 4.4
Obtén el factor integrador .
Paso 5
Paso 5.1
Aplica la regla de la constante.
Paso 5.2
Simplifica.
Paso 6
Paso 6.1
Multiplica por .
Paso 6.2
Aplica la propiedad distributiva.
Paso 6.3
Usa la regla de la potencia para combinar exponentes.
Paso 6.4
Multiplica por sumando los exponentes.
Paso 6.4.1
Mueve .
Paso 6.4.2
Usa la regla de la potencia para combinar exponentes.
Paso 6.4.3
Resta de .
Paso 6.5
Simplifica .
Paso 6.6
Multiplica por .
Paso 6.7
Aplica la propiedad distributiva.
Paso 6.8
Usa la regla de la potencia para combinar exponentes.
Paso 6.9
Multiplica por sumando los exponentes.
Paso 6.9.1
Usa la regla de la potencia para combinar exponentes.
Paso 6.9.2
Suma y .
Paso 6.10
Simplifica .
Paso 7
Establece igual a la integral de .
Paso 8
Paso 8.1
Divide la única integral en varias integrales.
Paso 8.2
Sea . Entonces . Reescribe mediante y .
Paso 8.2.1
Deja . Obtén .
Paso 8.2.1.1
Diferencia .
Paso 8.2.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 8.2.1.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 8.2.1.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 8.2.1.5
Suma y .
Paso 8.2.2
Reescribe el problema mediante y .
Paso 8.3
La integral de con respecto a es .
Paso 8.4
Aplica la regla de la constante.
Paso 8.5
Simplifica.
Paso 8.6
Reemplaza todos los casos de con .
Paso 9
Como la integral de , contendrá una constante de integración, podemos reemplazar con .
Paso 10
Establece .
Paso 11
Paso 11.1
Diferencia con respecto a .
Paso 11.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 11.3
Evalúa .
Paso 11.3.1
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 11.3.1.1
Para aplicar la regla de la cadena, establece como .
Paso 11.3.1.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 11.3.1.3
Reemplaza todos los casos de con .
Paso 11.3.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 11.3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 11.3.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 11.3.5
Suma y .
Paso 11.3.6
Multiplica por .
Paso 11.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 11.5
Diferencia con la regla de la función que establece que la derivada de es .
Paso 11.6
Simplifica.
Paso 11.6.1
Suma y .
Paso 11.6.2
Reordena los términos.
Paso 12
Paso 12.1
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Paso 12.1.1
Resta de ambos lados de la ecuación.
Paso 12.1.2
Combina los términos opuestos en .
Paso 12.1.2.1
Resta de .
Paso 12.1.2.2
Suma y .
Paso 13
Paso 13.1
Integra ambos lados de .
Paso 13.2
Evalúa .
Paso 13.3
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 13.4
Según la regla de la potencia, la integral de con respecto a es .
Paso 13.5
Simplifica la respuesta.
Paso 13.5.1
Reescribe como .
Paso 13.5.2
Simplifica.
Paso 13.5.2.1
Combina y .
Paso 13.5.2.2
Cancela el factor común de .
Paso 13.5.2.2.1
Cancela el factor común.
Paso 13.5.2.2.2
Reescribe la expresión.
Paso 13.5.2.3
Multiplica por .
Paso 14
Sustituye por en .