Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Diferencia con respecto a .
Paso 1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.5
Suma y .
Paso 1.6
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.7
Simplifica los términos.
Paso 1.7.1
Combina y .
Paso 1.7.2
Cancela el factor común de .
Paso 1.7.2.1
Cancela el factor común.
Paso 1.7.2.2
Reescribe la expresión.
Paso 1.7.3
Multiplica por .
Paso 1.8
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.9
Multiplica por .
Paso 2
Paso 2.1
Diferencia con respecto a .
Paso 2.2
Diferencia.
Paso 2.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3
Evalúa .
Paso 2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.3
Multiplica por .
Paso 2.4
Resta de .
Paso 3
Paso 3.1
Sustituye por y para .
Paso 3.2
Debido a que se ha demostrado que los dos lados son equivalentes, la ecuación es una identidad.
es una identidad.
es una identidad.
Paso 4
Establece igual a la integral de .
Paso 5
Paso 5.1
Divide la única integral en varias integrales.
Paso 5.2
Según la regla de la potencia, la integral de con respecto a es .
Paso 5.3
Aplica la regla de la constante.
Paso 5.4
Simplifica.
Paso 6
Como la integral de , contendrá una constante de integración, podemos reemplazar con .
Paso 7
Establece .
Paso 8
Paso 8.1
Diferencia con respecto a .
Paso 8.2
Diferencia.
Paso 8.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 8.2.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 8.3
Evalúa .
Paso 8.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 8.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 8.3.3
Multiplica por .
Paso 8.4
Diferencia con la regla de la función que establece que la derivada de es .
Paso 8.5
Simplifica.
Paso 8.5.1
Resta de .
Paso 8.5.2
Reordena los términos.
Paso 9
Paso 9.1
Resuelve
Paso 9.1.1
Simplifica .
Paso 9.1.1.1
Reescribe.
Paso 9.1.1.2
Simplifica mediante la adición de ceros.
Paso 9.1.1.3
Multiplica por .
Paso 9.1.2
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Paso 9.1.2.1
Suma a ambos lados de la ecuación.
Paso 9.1.2.2
Simplifica cada término.
Paso 9.1.2.2.1
Divide la fracción en dos fracciones.
Paso 9.1.2.2.2
Simplifica cada término.
Paso 9.1.2.2.2.1
Cancela el factor común de .
Paso 9.1.2.2.2.1.1
Cancela el factor común.
Paso 9.1.2.2.2.1.2
Divide por .
Paso 9.1.2.2.2.2
Reescribe como .
Paso 9.1.2.3
Combina los términos opuestos en .
Paso 9.1.2.3.1
Suma y .
Paso 9.1.2.3.2
Suma y .
Paso 10
Paso 10.1
Integra ambos lados de .
Paso 10.2
Evalúa .
Paso 10.3
Mueve fuera del denominador mediante su elevación a la potencia .
Paso 10.4
Multiplica los exponentes en .
Paso 10.4.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 10.4.2
Multiplica por .
Paso 10.5
Según la regla de la potencia, la integral de con respecto a es .
Paso 10.6
Reescribe como .
Paso 11
Sustituye por en .
Paso 12
Combina y .