Cálculo Ejemplos

Resuelve la Ecuación Diferencial (dy)/(dx)+3x^2y^2=4x^3y^2
Paso 1
Separa las variables.
Toca para ver más pasos...
Paso 1.1
Resta de ambos lados de la ecuación.
Paso 1.2
Factoriza de .
Toca para ver más pasos...
Paso 1.2.1
Factoriza de .
Paso 1.2.2
Factoriza de .
Paso 1.2.3
Factoriza de .
Paso 1.3
Multiplica ambos lados por .
Paso 1.4
Simplifica.
Toca para ver más pasos...
Paso 1.4.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.4.1.1
Factoriza de .
Paso 1.4.1.2
Cancela el factor común.
Paso 1.4.1.3
Reescribe la expresión.
Paso 1.4.2
Aplica la propiedad distributiva.
Paso 1.4.3
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 1.4.4
Mueve a la izquierda de .
Paso 1.4.5
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 1.4.5.1
Mueve .
Paso 1.4.5.2
Multiplica por .
Toca para ver más pasos...
Paso 1.4.5.2.1
Eleva a la potencia de .
Paso 1.4.5.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 1.4.5.3
Suma y .
Paso 1.5
Reescribe la ecuación.
Paso 2
Integra ambos lados.
Toca para ver más pasos...
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
Integra el lado izquierdo.
Toca para ver más pasos...
Paso 2.2.1
Aplica reglas básicas de exponentes.
Toca para ver más pasos...
Paso 2.2.1.1
Mueve fuera del denominador mediante su elevación a la potencia .
Paso 2.2.1.2
Multiplica los exponentes en .
Toca para ver más pasos...
Paso 2.2.1.2.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.2.1.2.2
Multiplica por .
Paso 2.2.2
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.2.3
Reescribe como .
Paso 2.3
Integra el lado derecho.
Toca para ver más pasos...
Paso 2.3.1
Divide la única integral en varias integrales.
Paso 2.3.2
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.3
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.3.4
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.5
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.3.6
Simplifica.
Toca para ver más pasos...
Paso 2.3.6.1
Simplifica.
Paso 2.3.6.2
Simplifica.
Toca para ver más pasos...
Paso 2.3.6.2.1
Combina y .
Paso 2.3.6.2.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.3.6.2.2.1
Cancela el factor común.
Paso 2.3.6.2.2.2
Reescribe la expresión.
Paso 2.3.6.2.3
Multiplica por .
Paso 2.3.6.2.4
Combina y .
Paso 2.3.6.2.5
Cancela el factor común de y .
Toca para ver más pasos...
Paso 2.3.6.2.5.1
Factoriza de .
Paso 2.3.6.2.5.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 2.3.6.2.5.2.1
Factoriza de .
Paso 2.3.6.2.5.2.2
Cancela el factor común.
Paso 2.3.6.2.5.2.3
Reescribe la expresión.
Paso 2.3.6.2.5.2.4
Divide por .
Paso 2.4
Agrupa la constante de integración en el lado derecho como .
Paso 3
Resuelve
Toca para ver más pasos...
Paso 3.1
Obtén el mcd de los términos en la ecuación.
Toca para ver más pasos...
Paso 3.1.1
La obtención del mcd de una lista de valores es lo mismo que obtener el MCM de los denominadores de esos valores.
Paso 3.1.2
El mínimo común múltiplo (MCM) de una y cualquier expresión es la expresión.
Paso 3.2
Multiplica cada término en por para eliminar las fracciones.
Toca para ver más pasos...
Paso 3.2.1
Multiplica cada término en por .
Paso 3.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.2.2.1.1
Mueve el signo menos inicial en al numerador.
Paso 3.2.2.1.2
Cancela el factor común.
Paso 3.2.2.1.3
Reescribe la expresión.
Paso 3.3
Resuelve la ecuación.
Toca para ver más pasos...
Paso 3.3.1
Reescribe la ecuación como .
Paso 3.3.2
Factoriza de .
Toca para ver más pasos...
Paso 3.3.2.1
Factoriza de .
Paso 3.3.2.2
Factoriza de .
Paso 3.3.2.3
Factoriza de .
Paso 3.3.2.4
Factoriza de .
Paso 3.3.2.5
Factoriza de .
Paso 3.3.3
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 3.3.3.1
Divide cada término en por .
Paso 3.3.3.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.3.3.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.3.3.2.1.1
Cancela el factor común.
Paso 3.3.3.2.1.2
Divide por .
Paso 3.3.3.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.3.3.3.1
Mueve el negativo al frente de la fracción.