Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Resta de ambos lados de la ecuación.
Paso 1.2
Reescribe la ecuación.
Paso 2
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
Aplica la regla de la constante.
Paso 2.3
Integra el lado derecho.
Paso 2.3.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.2
Sea . Entonces , de modo que . Reescribe mediante y .
Paso 2.3.2.1
Deja . Obtén .
Paso 2.3.2.1.1
Diferencia .
Paso 2.3.2.1.2
Diferencia con la regla de la cadena, que establece que es donde y .
Paso 2.3.2.1.2.1
Para aplicar la regla de la cadena, establece como .
Paso 2.3.2.1.2.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 2.3.2.1.2.3
Reemplaza todos los casos de con .
Paso 2.3.2.1.3
Diferencia.
Paso 2.3.2.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.2.1.3.2
Combina y .
Paso 2.3.2.1.3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.2.1.3.4
Simplifica los términos.
Paso 2.3.2.1.3.4.1
Multiplica por .
Paso 2.3.2.1.3.4.2
Combina y .
Paso 2.3.2.1.3.4.3
Combina y .
Paso 2.3.2.1.3.4.4
Cancela el factor común de y .
Paso 2.3.2.1.3.4.4.1
Factoriza de .
Paso 2.3.2.1.3.4.4.2
Cancela los factores comunes.
Paso 2.3.2.1.3.4.4.2.1
Factoriza de .
Paso 2.3.2.1.3.4.4.2.2
Cancela el factor común.
Paso 2.3.2.1.3.4.4.2.3
Reescribe la expresión.
Paso 2.3.2.1.3.4.4.2.4
Divide por .
Paso 2.3.2.1.3.4.5
Reordena los factores en .
Paso 2.3.2.2
Reescribe el problema mediante y .
Paso 2.3.3
Aplica la regla de la constante.
Paso 2.3.4
Simplifica la respuesta.
Paso 2.3.4.1
Simplifica.
Paso 2.3.4.2
Simplifica.
Paso 2.3.4.2.1
Multiplica por .
Paso 2.3.4.2.2
Multiplica por .
Paso 2.3.4.3
Reemplaza todos los casos de con .
Paso 2.3.4.4
Reordena los términos.
Paso 2.4
Agrupa la constante de integración en el lado derecho como .