Cálculo Ejemplos

Resuelve la Ecuación Diferencial (xy)dx-(x+2)dy=0
Paso 1
Resta de ambos lados de la ecuación.
Paso 2
Multiplica ambos lados por .
Paso 3
Simplifica.
Toca para ver más pasos...
Paso 3.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.2.1
Mueve el signo menos inicial en al numerador.
Paso 3.2.2
Factoriza de .
Paso 3.2.3
Cancela el factor común.
Paso 3.2.4
Reescribe la expresión.
Paso 3.3
Mueve el negativo al frente de la fracción.
Paso 3.4
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.5
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.5.1
Mueve el signo menos inicial en al numerador.
Paso 3.5.2
Factoriza de .
Paso 3.5.3
Factoriza de .
Paso 3.5.4
Cancela el factor común.
Paso 3.5.5
Reescribe la expresión.
Paso 3.6
Combina y .
Paso 3.7
Mueve el negativo al frente de la fracción.
Paso 4
Integra ambos lados.
Toca para ver más pasos...
Paso 4.1
Establece una integral en cada lado.
Paso 4.2
Integra el lado izquierdo.
Toca para ver más pasos...
Paso 4.2.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 4.2.2
La integral de con respecto a es .
Paso 4.2.3
Simplifica.
Paso 4.3
Integra el lado derecho.
Toca para ver más pasos...
Paso 4.3.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 4.3.2
Divide por .
Toca para ver más pasos...
Paso 4.3.2.1
Establece los polinomios que se dividirán. Si no hay un término para cada exponente, inserta uno con un valor de .
++
Paso 4.3.2.2
Divide el término de mayor orden en el dividendo por el término de mayor orden en el divisor .
++
Paso 4.3.2.3
Multiplica el nuevo término del cociente por el divisor.
++
++
Paso 4.3.2.4
La expresión debe restarse del dividendo, así es que cambia todos los signos en .
++
--
Paso 4.3.2.5
Después de cambiar los signos, agrega el último dividendo del polinomio multiplicado para buscar el nuevo dividendo.
++
--
-
Paso 4.3.2.6
La respuesta final es el cociente más el resto sobre el divisor.
Paso 4.3.3
Divide la única integral en varias integrales.
Paso 4.3.4
Aplica la regla de la constante.
Paso 4.3.5
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 4.3.6
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 4.3.7
Multiplica por .
Paso 4.3.8
Sea . Entonces . Reescribe mediante y .
Toca para ver más pasos...
Paso 4.3.8.1
Deja . Obtén .
Toca para ver más pasos...
Paso 4.3.8.1.1
Diferencia .
Paso 4.3.8.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 4.3.8.1.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 4.3.8.1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 4.3.8.1.5
Suma y .
Paso 4.3.8.2
Reescribe el problema mediante y .
Paso 4.3.9
La integral de con respecto a es .
Paso 4.3.10
Simplifica.
Paso 4.3.11
Reemplaza todos los casos de con .
Paso 4.3.12
Simplifica.
Toca para ver más pasos...
Paso 4.3.12.1
Aplica la propiedad distributiva.
Paso 4.3.12.2
Multiplica por .
Paso 4.4
Agrupa la constante de integración en el lado derecho como .
Paso 5
Resuelve
Toca para ver más pasos...
Paso 5.1
Mueve todos los términos que contengan un logaritmo al lado izquierdo de la ecuación.
Paso 5.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 5.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 5.2.1.1
Simplifica al mover dentro del algoritmo.
Paso 5.2.1.2
Elimina el valor absoluto en porque las potenciaciones con potencias pares siempre son positivas.
Paso 5.3
Suma a ambos lados de la ecuación.
Paso 5.4
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 5.4.1
Divide cada término en por .
Paso 5.4.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 5.4.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 5.4.2.2
Divide por .
Paso 5.4.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 5.4.3.1
Simplifica cada término.
Toca para ver más pasos...
Paso 5.4.3.1.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 5.4.3.1.2
Divide por .
Paso 5.4.3.1.3
Mueve el negativo del denominador de .
Paso 5.4.3.1.4
Reescribe como .
Paso 5.4.3.1.5
Mueve el negativo del denominador de .
Paso 5.4.3.1.6
Reescribe como .
Paso 5.5
Mueve todos los términos que contengan un logaritmo al lado izquierdo de la ecuación.
Paso 5.6
Usa las propiedades de los logaritmos del producto, .
Paso 5.7
Para resolver , reescribe la ecuación mediante las propiedades de los logaritmos.
Paso 5.8
Reescribe en formato exponencial mediante la definición de un logaritmo. Si y son números reales positivos y , entonces es equivalente a .
Paso 5.9
Resuelve
Toca para ver más pasos...
Paso 5.9.1
Reescribe la ecuación como .
Paso 5.9.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 5.9.2.1
Divide cada término en por .
Paso 5.9.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 5.9.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 5.9.2.2.1.1
Cancela el factor común.
Paso 5.9.2.2.1.2
Divide por .
Paso 5.9.3
Elimina el término de valor absoluto. Esto crea un en el lado derecho de la ecuación debido a .
Paso 6
Agrupa los términos de la constante.
Toca para ver más pasos...
Paso 6.1
Simplifica la constante de integración.
Paso 6.2
Reescribe como .
Paso 6.3
Reordena y .
Paso 6.4
Combina constantes con el signo más o menos.