Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Diferencia con respecto a .
Paso 1.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3
Diferencia con la regla exponencial, que establece que es donde = .
Paso 2
Paso 2.1
Diferencia con respecto a .
Paso 2.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.3
Evalúa .
Paso 2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.3
Mueve a la izquierda de .
Paso 2.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.5
Simplifica.
Paso 2.5.1
Suma y .
Paso 2.5.2
Reordena los factores en .
Paso 3
Paso 3.1
Sustituye por y para .
Paso 3.2
Debido a que se ha demostrado que los dos lados son equivalentes, la ecuación es una identidad.
es una identidad.
es una identidad.
Paso 4
Establece igual a la integral de .
Paso 5
Paso 5.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 5.2
Según la regla de la potencia, la integral de con respecto a es .
Paso 5.3
Simplifica la respuesta.
Paso 5.3.1
Reescribe como .
Paso 5.3.2
Simplifica.
Paso 5.3.2.1
Combina y .
Paso 5.3.2.2
Combina y .
Paso 5.3.2.3
Cancela el factor común de .
Paso 5.3.2.3.1
Cancela el factor común.
Paso 5.3.2.3.2
Divide por .
Paso 6
Como la integral de , contendrá una constante de integración, podemos reemplazar con .
Paso 7
Establece .
Paso 8
Paso 8.1
Diferencia con respecto a .
Paso 8.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 8.3
Evalúa .
Paso 8.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 8.3.2
Diferencia con la regla exponencial, que establece que es donde = .
Paso 8.4
Diferencia con la regla de la función que establece que la derivada de es .
Paso 8.5
Simplifica.
Paso 8.5.1
Reordena los términos.
Paso 8.5.2
Reordena los factores en .
Paso 9
Paso 9.1
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Paso 9.1.1
Resta de ambos lados de la ecuación.
Paso 9.1.2
Combina los términos opuestos en .
Paso 9.1.2.1
Resta de .
Paso 9.1.2.2
Resta de .
Paso 10
Paso 10.1
Integra ambos lados de .
Paso 10.2
Evalúa .
Paso 10.3
Aplica la regla de la constante.
Paso 11
Sustituye por en .
Paso 12
Reordena los factores en .