Cálculo Ejemplos

Resuelve la Ecuación Diferencial 2(dy)/(dx)-1/y=(2x)/y
Paso 1
Separa las variables.
Toca para ver más pasos...
Paso 1.1
Resuelve
Toca para ver más pasos...
Paso 1.1.1
Resta de ambos lados de la ecuación.
Paso 1.1.2
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Toca para ver más pasos...
Paso 1.1.2.1
Suma a ambos lados de la ecuación.
Paso 1.1.2.2
Suma a ambos lados de la ecuación.
Paso 1.1.3
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 1.1.3.1
Divide cada término en por .
Paso 1.1.3.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 1.1.3.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.1.3.2.1.1
Cancela el factor común.
Paso 1.1.3.2.1.2
Divide por .
Paso 1.1.3.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 1.1.3.3.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.1.3.3.1.1
Multiplica el numerador por la recíproca del denominador.
Paso 1.1.3.3.1.2
Multiplica por .
Paso 1.1.3.3.1.3
Mueve a la izquierda de .
Paso 1.1.3.3.1.4
Multiplica el numerador por la recíproca del denominador.
Paso 1.1.3.3.1.5
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.1.3.3.1.5.1
Factoriza de .
Paso 1.1.3.3.1.5.2
Cancela el factor común.
Paso 1.1.3.3.1.5.3
Reescribe la expresión.
Paso 1.2
Factoriza.
Toca para ver más pasos...
Paso 1.2.1
Para escribir como una fracción con un denominador común, multiplica por .
Paso 1.2.2
Escribe cada expresión con un denominador común de , mediante la multiplicación de cada uno por un factor adecuado de .
Toca para ver más pasos...
Paso 1.2.2.1
Multiplica por .
Paso 1.2.2.2
Reordena los factores de .
Paso 1.2.3
Combina los numeradores sobre el denominador común.
Paso 1.2.4
Mueve a la izquierda de .
Paso 1.3
Multiplica ambos lados por .
Paso 1.4
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.4.1
Factoriza de .
Paso 1.4.2
Cancela el factor común.
Paso 1.4.3
Reescribe la expresión.
Paso 1.5
Reescribe la ecuación.
Paso 2
Integra ambos lados.
Toca para ver más pasos...
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.3
Integra el lado derecho.
Toca para ver más pasos...
Paso 2.3.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.2
Divide la única integral en varias integrales.
Paso 2.3.3
Aplica la regla de la constante.
Paso 2.3.4
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.5
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.3.6
Simplifica.
Paso 2.4
Agrupa la constante de integración en el lado derecho como .
Paso 3
Resuelve
Toca para ver más pasos...
Paso 3.1
Multiplica ambos lados de la ecuación por .
Paso 3.2
Simplifica ambos lados de la ecuación.
Toca para ver más pasos...
Paso 3.2.1
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.2.1.1
Simplifica .
Toca para ver más pasos...
Paso 3.2.1.1.1
Combina y .
Paso 3.2.1.1.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.2.1.1.2.1
Cancela el factor común.
Paso 3.2.1.1.2.2
Reescribe la expresión.
Paso 3.2.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.2.2.1
Simplifica .
Toca para ver más pasos...
Paso 3.2.2.1.1
Simplifica cada término.
Toca para ver más pasos...
Paso 3.2.2.1.1.1
Aplica la propiedad distributiva.
Paso 3.2.2.1.1.2
Combina y .
Paso 3.2.2.1.1.3
Combina y .
Paso 3.2.2.1.2
Aplica la propiedad distributiva.
Paso 3.2.2.1.3
Simplifica.
Toca para ver más pasos...
Paso 3.2.2.1.3.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.2.2.1.3.1.1
Cancela el factor común.
Paso 3.2.2.1.3.1.2
Reescribe la expresión.
Paso 3.2.2.1.3.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.2.2.1.3.2.1
Cancela el factor común.
Paso 3.2.2.1.3.2.2
Reescribe la expresión.
Paso 3.3
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 3.4
La solución completa es el resultado de las partes positiva y negativa de la solución.
Toca para ver más pasos...
Paso 3.4.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 3.4.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 3.4.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 4
Simplifica la constante de integración.