Cálculo Ejemplos

Resuelve la Ecuación Diferencial (dy)/(dx)=e^(-y)(2x-4) , y(5)=0
,
Paso 1
Separa las variables.
Toca para ver más pasos...
Paso 1.1
Multiplica ambos lados por .
Paso 1.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.2.1
Cancela el factor común.
Paso 1.2.2
Reescribe la expresión.
Paso 1.3
Reescribe la ecuación.
Paso 2
Integra ambos lados.
Toca para ver más pasos...
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
Integra el lado izquierdo.
Toca para ver más pasos...
Paso 2.2.1
Simplifica la expresión.
Toca para ver más pasos...
Paso 2.2.1.1
Niega el exponente de y quítalo del denominador.
Paso 2.2.1.2
Simplifica.
Toca para ver más pasos...
Paso 2.2.1.2.1
Multiplica los exponentes en .
Toca para ver más pasos...
Paso 2.2.1.2.1.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.2.1.2.1.2
Multiplica .
Toca para ver más pasos...
Paso 2.2.1.2.1.2.1
Multiplica por .
Paso 2.2.1.2.1.2.2
Multiplica por .
Paso 2.2.1.2.2
Multiplica por .
Paso 2.2.2
La integral de con respecto a es .
Paso 2.3
Integra el lado derecho.
Toca para ver más pasos...
Paso 2.3.1
Divide la única integral en varias integrales.
Paso 2.3.2
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.3
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.3.4
Aplica la regla de la constante.
Paso 2.3.5
Simplifica.
Toca para ver más pasos...
Paso 2.3.5.1
Combina y .
Paso 2.3.5.2
Simplifica.
Paso 2.4
Agrupa la constante de integración en el lado derecho como .
Paso 3
Resuelve
Toca para ver más pasos...
Paso 3.1
Resta el logaritmo natural de ambos lados de la ecuación para eliminar la variable del exponente.
Paso 3.2
Expande el lado izquierdo.
Toca para ver más pasos...
Paso 3.2.1
Expande ; para ello, mueve fuera del logaritmo.
Paso 3.2.2
El logaritmo natural de es .
Paso 3.2.3
Multiplica por .
Paso 4
Usa la condición inicial para obtener el valor de mediante la sustitución de por y de por en .
Paso 5
Resuelve
Toca para ver más pasos...
Paso 5.1
Reescribe la ecuación como .
Paso 5.2
Para resolver , reescribe la ecuación mediante las propiedades de los logaritmos.
Paso 5.3
Reescribe en formato exponencial mediante la definición de un logaritmo. Si y son números reales positivos y , entonces es equivalente a .
Paso 5.4
Resuelve
Toca para ver más pasos...
Paso 5.4.1
Reescribe la ecuación como .
Paso 5.4.2
Simplifica .
Toca para ver más pasos...
Paso 5.4.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 5.4.2.1.1
Eleva a la potencia de .
Paso 5.4.2.1.2
Multiplica por .
Paso 5.4.2.2
Resta de .
Paso 5.4.3
Cualquier valor elevado a es .
Paso 5.4.4
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Toca para ver más pasos...
Paso 5.4.4.1
Resta de ambos lados de la ecuación.
Paso 5.4.4.2
Resta de .
Paso 6
Sustituye por en y simplifica.
Toca para ver más pasos...
Paso 6.1
Sustituye por .