Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Resta de ambos lados de la ecuación.
Paso 2
Paso 2.1
Diferencia con respecto a .
Paso 2.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.4
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.5
Suma y .
Paso 3
Paso 3.1
Diferencia con respecto a .
Paso 3.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 3.4
Multiplica por .
Paso 4
Paso 4.1
Sustituye por y para .
Paso 4.2
Como el lado izquierdo no es igual al lado derecho, la ecuación no es una identidad.
no es una identidad.
no es una identidad.
Paso 5
Paso 5.1
Sustituye por .
Paso 5.2
Sustituye por .
Paso 5.3
Sustituye por .
Paso 5.3.1
Sustituye por .
Paso 5.3.2
Suma y .
Paso 5.3.3
Mueve el negativo al frente de la fracción.
Paso 5.4
Obtén el factor integrador .
Paso 6
Paso 6.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 6.2
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 6.3
Multiplica por .
Paso 6.4
La integral de con respecto a es .
Paso 6.5
Simplifica.
Paso 6.6
Simplifica cada término.
Paso 6.6.1
Simplifica al mover dentro del algoritmo.
Paso 6.6.2
Potencia y logaritmo son funciones inversas.
Paso 6.6.3
Elimina el valor absoluto en porque las potenciaciones con potencias pares siempre son positivas.
Paso 6.6.4
Reescribe la expresión mediante la regla del exponente negativo .
Paso 7
Paso 7.1
Multiplica por .
Paso 7.2
Multiplica por .
Paso 7.3
Multiplica por .
Paso 7.4
Cancela el factor común de .
Paso 7.4.1
Factoriza de .
Paso 7.4.2
Factoriza de .
Paso 7.4.3
Cancela el factor común.
Paso 7.4.4
Reescribe la expresión.
Paso 8
Establece igual a la integral de .
Paso 9
Paso 9.1
Aplica la regla de la constante.
Paso 9.2
Combina y .
Paso 10
Como la integral de , contendrá una constante de integración, podemos reemplazar con .
Paso 11
Establece .
Paso 12
Paso 12.1
Diferencia con respecto a .
Paso 12.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 12.3
Evalúa .
Paso 12.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 12.3.2
Reescribe como .
Paso 12.3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 12.3.4
Multiplica por .
Paso 12.3.5
Multiplica por .
Paso 12.4
Diferencia con la regla de la función que establece que la derivada de es .
Paso 12.5
Simplifica.
Paso 12.5.1
Reescribe la expresión mediante la regla del exponente negativo .
Paso 12.5.2
Combina y .
Paso 12.5.3
Reordena los términos.
Paso 13
Paso 13.1
Resuelve
Paso 13.1.1
Mueve todos los términos que contengan las variables al lado izquierdo de la ecuación
Paso 13.1.1.1
Resta de ambos lados de la ecuación.
Paso 13.1.1.2
Combina los numeradores sobre el denominador común.
Paso 13.1.1.3
Aplica la propiedad distributiva.
Paso 13.1.1.4
Combina los términos opuestos en .
Paso 13.1.1.4.1
Resta de .
Paso 13.1.1.4.2
Suma y .
Paso 13.1.1.5
Simplifica cada término.
Paso 13.1.1.5.1
Cancela el factor común de y .
Paso 13.1.1.5.1.1
Factoriza de .
Paso 13.1.1.5.1.2
Cancela los factores comunes.
Paso 13.1.1.5.1.2.1
Factoriza de .
Paso 13.1.1.5.1.2.2
Cancela el factor común.
Paso 13.1.1.5.1.2.3
Reescribe la expresión.
Paso 13.1.1.5.2
Mueve el negativo al frente de la fracción.
Paso 13.1.2
Suma a ambos lados de la ecuación.
Paso 14
Paso 14.1
Integra ambos lados de .
Paso 14.2
Evalúa .
Paso 14.3
La integral de con respecto a es .
Paso 15
Sustituye por en .