Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Multiplica ambos lados por .
Paso 1.2
Simplifica.
Paso 1.2.1
Cancela el factor común de .
Paso 1.2.1.1
Factoriza de .
Paso 1.2.1.2
Cancela el factor común.
Paso 1.2.1.3
Reescribe la expresión.
Paso 1.2.2
Aplica la propiedad distributiva.
Paso 1.2.3
Multiplica por .
Paso 1.2.4
Mueve a la izquierda de .
Paso 1.3
Reescribe la ecuación.
Paso 2
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
La integral de con respecto a es .
Paso 2.3
Integra el lado derecho.
Paso 2.3.1
Divide la única integral en varias integrales.
Paso 2.3.2
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.3.3
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.4
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.3.5
Simplifica.
Paso 2.3.5.1
Simplifica.
Paso 2.3.5.2
Simplifica.
Paso 2.3.5.2.1
Combina y .
Paso 2.3.5.2.2
Cancela el factor común de y .
Paso 2.3.5.2.2.1
Factoriza de .
Paso 2.3.5.2.2.2
Cancela los factores comunes.
Paso 2.3.5.2.2.2.1
Factoriza de .
Paso 2.3.5.2.2.2.2
Cancela el factor común.
Paso 2.3.5.2.2.2.3
Reescribe la expresión.
Paso 2.3.5.2.2.2.4
Divide por .
Paso 2.3.6
Reordena los términos.
Paso 2.4
Agrupa la constante de integración en el lado derecho como .
Paso 3
Paso 3.1
Para resolver , reescribe la ecuación mediante las propiedades de los logaritmos.
Paso 3.2
Reescribe en formato exponencial mediante la definición de un logaritmo. Si y son números reales positivos y , entonces es equivalente a .
Paso 3.3
Resuelve
Paso 3.3.1
Reescribe la ecuación como .
Paso 3.3.2
Combina y .
Paso 3.3.3
Elimina el término de valor absoluto. Esto crea un en el lado derecho de la ecuación debido a .
Paso 4
Paso 4.1
Reescribe como .
Paso 4.2
Reordena y .
Paso 4.3
Combina constantes con el signo más o menos.