Cálculo Ejemplos

Resuelve la Ecuación Diferencial (1+ logaritmo natural de x+y/x)dx-(1- logaritmo natural de x)dy=0
Paso 1
Obtén donde .
Toca para ver más pasos...
Paso 1.1
Diferencia con respecto a .
Paso 1.2
Diferencia.
Toca para ver más pasos...
Paso 1.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.2.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.2.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3
Evalúa .
Toca para ver más pasos...
Paso 1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.3
Multiplica por .
Paso 1.4
Combina los términos.
Toca para ver más pasos...
Paso 1.4.1
Suma y .
Paso 1.4.2
Suma y .
Paso 2
Obtén donde .
Toca para ver más pasos...
Paso 2.1
Diferencia con respecto a .
Paso 2.2
Diferencia.
Toca para ver más pasos...
Paso 2.2.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.4
Suma y .
Paso 2.2.5
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.2.6
Multiplica.
Toca para ver más pasos...
Paso 2.2.6.1
Multiplica por .
Paso 2.2.6.2
Multiplica por .
Paso 2.3
La derivada de con respecto a es .
Paso 3
Comprueba que .
Toca para ver más pasos...
Paso 3.1
Sustituye por y para .
Paso 3.2
Debido a que se ha demostrado que los dos lados son equivalentes, la ecuación es una identidad.
es una identidad.
es una identidad.
Paso 4
Establece igual a la integral de .
Paso 5
Integra para obtener .
Toca para ver más pasos...
Paso 5.1
Aplica la regla de la constante.
Paso 5.2
Reescribe como .
Paso 6
Como la integral de , contendrá una constante de integración, podemos reemplazar con .
Paso 7
Establece .
Paso 8
Obtén .
Toca para ver más pasos...
Paso 8.1
Diferencia con respecto a .
Paso 8.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 8.3
Evalúa .
Toca para ver más pasos...
Paso 8.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 8.3.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 8.3.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 8.3.4
La derivada de con respecto a es .
Paso 8.3.5
Suma y .
Paso 8.3.6
Combina y .
Paso 8.4
Diferencia con la regla de la función que establece que la derivada de es .
Paso 8.5
Reordena los términos.
Paso 9
Resuelve
Toca para ver más pasos...
Paso 9.1
Resuelve
Toca para ver más pasos...
Paso 9.1.1
Mueve todos los términos que contengan las variables al lado izquierdo de la ecuación
Toca para ver más pasos...
Paso 9.1.1.1
Resta de ambos lados de la ecuación.
Paso 9.1.1.2
Resta de ambos lados de la ecuación.
Paso 9.1.1.3
Combina los términos opuestos en .
Toca para ver más pasos...
Paso 9.1.1.3.1
Resta de .
Paso 9.1.1.3.2
Suma y .
Paso 9.1.2
Suma a ambos lados de la ecuación.
Paso 10
Obtén la antiderivada de y obtén .
Toca para ver más pasos...
Paso 10.1
Integra ambos lados de .
Paso 10.2
Evalúa .
Paso 10.3
Divide la única integral en varias integrales.
Paso 10.4
Aplica la regla de la constante.
Paso 10.5
Integra por partes mediante la fórmula , donde y .
Paso 10.6
Simplifica.
Toca para ver más pasos...
Paso 10.6.1
Combina y .
Paso 10.6.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 10.6.2.1
Cancela el factor común.
Paso 10.6.2.2
Reescribe la expresión.
Paso 10.7
Aplica la regla de la constante.
Paso 10.8
Simplifica.
Paso 10.9
Simplifica.
Toca para ver más pasos...
Paso 10.9.1
Resta de .
Paso 10.9.2
Suma y .
Paso 11
Sustituye por en .
Paso 12
Simplifica .
Toca para ver más pasos...
Paso 12.1
Simplifica cada término.
Toca para ver más pasos...
Paso 12.1.1
Aplica la propiedad distributiva.
Paso 12.1.2
Reescribe como .
Paso 12.2
Reordena los factores en .