Ingresa un problema...
Cálculo Ejemplos
Paso 1
Reescribe la ecuación.
Paso 2
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
Integra el lado izquierdo.
Paso 2.2.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.2.2
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.2.3
Simplifica la respuesta.
Paso 2.2.3.1
Reescribe como .
Paso 2.2.3.2
Simplifica.
Paso 2.2.3.2.1
Combina y .
Paso 2.2.3.2.2
Cancela el factor común de y .
Paso 2.2.3.2.2.1
Factoriza de .
Paso 2.2.3.2.2.2
Cancela los factores comunes.
Paso 2.2.3.2.2.2.1
Factoriza de .
Paso 2.2.3.2.2.2.2
Cancela el factor común.
Paso 2.2.3.2.2.2.3
Reescribe la expresión.
Paso 2.2.3.2.2.2.4
Divide por .
Paso 2.3
Integra el lado derecho.
Paso 2.3.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.2
Sea . Entonces , de modo que . Reescribe mediante y .
Paso 2.3.2.1
Deja . Obtén .
Paso 2.3.2.1.1
Diferencia .
Paso 2.3.2.1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.3.2.1.3
Evalúa .
Paso 2.3.2.1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.2.1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.2.1.3.3
Multiplica por .
Paso 2.3.2.1.4
Diferencia con la regla de la constante.
Paso 2.3.2.1.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.2.1.4.2
Suma y .
Paso 2.3.2.2
Reescribe el problema mediante y .
Paso 2.3.3
Simplifica.
Paso 2.3.3.1
Multiplica por .
Paso 2.3.3.2
Mueve a la izquierda de .
Paso 2.3.4
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.5
Simplifica la expresión.
Paso 2.3.5.1
Simplifica.
Paso 2.3.5.1.1
Combina y .
Paso 2.3.5.1.2
Cancela el factor común de y .
Paso 2.3.5.1.2.1
Factoriza de .
Paso 2.3.5.1.2.2
Cancela los factores comunes.
Paso 2.3.5.1.2.2.1
Factoriza de .
Paso 2.3.5.1.2.2.2
Cancela el factor común.
Paso 2.3.5.1.2.2.3
Reescribe la expresión.
Paso 2.3.5.1.2.2.4
Divide por .
Paso 2.3.5.2
Aplica reglas básicas de exponentes.
Paso 2.3.5.2.1
Mueve fuera del denominador mediante su elevación a la potencia .
Paso 2.3.5.2.2
Multiplica los exponentes en .
Paso 2.3.5.2.2.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.3.5.2.2.2
Multiplica por .
Paso 2.3.6
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.3.7
Simplifica.
Paso 2.3.7.1
Reescribe como .
Paso 2.3.7.2
Simplifica.
Paso 2.3.7.2.1
Multiplica por .
Paso 2.3.7.2.2
Combina y .
Paso 2.3.7.2.3
Mueve el negativo al frente de la fracción.
Paso 2.3.8
Reemplaza todos los casos de con .
Paso 2.4
Agrupa la constante de integración en el lado derecho como .
Paso 3
Paso 3.1
Divide cada término en por y simplifica.
Paso 3.1.1
Divide cada término en por .
Paso 3.1.2
Simplifica el lado izquierdo.
Paso 3.1.2.1
Cancela el factor común de .
Paso 3.1.2.1.1
Cancela el factor común.
Paso 3.1.2.1.2
Divide por .
Paso 3.1.3
Simplifica el lado derecho.
Paso 3.1.3.1
Combina los numeradores sobre el denominador común.
Paso 3.1.3.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 3.1.3.3
Combina los numeradores sobre el denominador común.
Paso 3.1.3.4
Simplifica el numerador.
Paso 3.1.3.4.1
Aplica la propiedad distributiva.
Paso 3.1.3.4.2
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.1.3.4.3
Mueve a la izquierda de .
Paso 3.1.3.5
Simplifica con la obtención del factor común.
Paso 3.1.3.5.1
Reescribe como .
Paso 3.1.3.5.2
Factoriza de .
Paso 3.1.3.5.3
Factoriza de .
Paso 3.1.3.5.4
Factoriza de .
Paso 3.1.3.5.5
Factoriza de .
Paso 3.1.3.5.6
Mueve el negativo al frente de la fracción.
Paso 3.1.3.6
Multiplica el numerador por la recíproca del denominador.
Paso 3.1.3.7
Multiplica por .
Paso 3.2
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 3.3
Simplifica .
Paso 3.3.1
Reescribe como .
Paso 3.3.1.1
Factoriza la potencia perfecta de .
Paso 3.3.1.2
Factoriza la potencia perfecta de .
Paso 3.3.1.3
Reorganiza la fracción .
Paso 3.3.1.4
Reordena y .
Paso 3.3.1.5
Reescribe como .
Paso 3.3.1.6
Agrega paréntesis.
Paso 3.3.2
Retira los términos de abajo del radical.
Paso 3.3.3
Uno elevado a cualquier potencia es uno.
Paso 3.3.4
Combina y .
Paso 3.4
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 3.4.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 3.4.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 3.4.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 4
Simplifica la constante de integración.