Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Multiplica ambos lados por .
Paso 1.2
Simplifica.
Paso 1.2.1
Cancela el factor común de .
Paso 1.2.1.1
Factoriza de .
Paso 1.2.1.2
Cancela el factor común.
Paso 1.2.1.3
Reescribe la expresión.
Paso 1.2.2
Mueve el negativo al frente de la fracción.
Paso 1.3
Reescribe la ecuación.
Paso 2
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
La integral de con respecto a es .
Paso 2.3
Integra el lado derecho.
Paso 2.3.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.2
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.3
Multiplica por .
Paso 2.3.4
La integral de con respecto a es .
Paso 2.3.5
Simplifica.
Paso 2.4
Agrupa la constante de integración en el lado derecho como .
Paso 3
Paso 3.1
Mueve todos los términos que contengan un logaritmo al lado izquierdo de la ecuación.
Paso 3.2
Simplifica el lado izquierdo.
Paso 3.2.1
Simplifica .
Paso 3.2.1.1
Simplifica cada término.
Paso 3.2.1.1.1
Simplifica al mover dentro del algoritmo.
Paso 3.2.1.1.2
Elimina el valor absoluto en porque las potenciaciones con potencias pares siempre son positivas.
Paso 3.2.1.2
Usa las propiedades de los logaritmos del producto, .
Paso 3.2.1.3
Reordena los factores en .
Paso 3.3
Para resolver , reescribe la ecuación mediante las propiedades de los logaritmos.
Paso 3.4
Reescribe en formato exponencial mediante la definición de un logaritmo. Si y son números reales positivos y , entonces es equivalente a .
Paso 3.5
Resuelve
Paso 3.5.1
Reescribe la ecuación como .
Paso 3.5.2
Divide cada término en por y simplifica.
Paso 3.5.2.1
Divide cada término en por .
Paso 3.5.2.2
Simplifica el lado izquierdo.
Paso 3.5.2.2.1
Cancela el factor común de .
Paso 3.5.2.2.1.1
Cancela el factor común.
Paso 3.5.2.2.1.2
Divide por .
Paso 3.5.3
Elimina el término de valor absoluto. Esto crea un en el lado derecho de la ecuación debido a .
Paso 4
Paso 4.1
Simplifica la constante de integración.
Paso 4.2
Combina constantes con el signo más o menos.