Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Diferencia con respecto a .
Paso 1.2
Diferencia.
Paso 1.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.2.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3
Evalúa .
Paso 1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.2
La derivada de con respecto a es .
Paso 1.4
Simplifica.
Paso 1.4.1
Resta de .
Paso 1.4.2
Reordena los factores de .
Paso 2
Paso 2.1
Diferencia con respecto a .
Paso 2.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3
La derivada de con respecto a es .
Paso 2.4
Reordena los factores de .
Paso 3
Paso 3.1
Sustituye por y para .
Paso 3.2
Debido a que se ha demostrado que los dos lados son equivalentes, la ecuación es una identidad.
es una identidad.
es una identidad.
Paso 4
Establece igual a la integral de .
Paso 5
Paso 5.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 5.2
La integral de con respecto a es .
Paso 5.3
Simplifica.
Paso 6
Como la integral de , contendrá una constante de integración, podemos reemplazar con .
Paso 7
Establece .
Paso 8
Paso 8.1
Diferencia con respecto a .
Paso 8.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 8.3
Evalúa .
Paso 8.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 8.3.2
La derivada de con respecto a es .
Paso 8.4
Diferencia con la regla de la función que establece que la derivada de es .
Paso 8.5
Reordena los términos.
Paso 9
Paso 9.1
Resuelve
Paso 9.1.1
Simplifica el lado derecho.
Paso 9.1.1.1
Simplifica .
Paso 9.1.1.1.1
Reescribe en términos de senos y cosenos.
Paso 9.1.1.1.2
Convierte de a .
Paso 9.1.2
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Paso 9.1.2.1
Suma a ambos lados de la ecuación.
Paso 9.1.2.2
Combina los términos opuestos en .
Paso 9.1.2.2.1
Suma y .
Paso 9.1.2.2.2
Suma y .
Paso 9.1.2.3
Reescribe en términos de senos y cosenos.
Paso 9.1.2.4
Convierte de a .
Paso 10
Paso 10.1
Integra ambos lados de .
Paso 10.2
Evalúa .
Paso 10.3
La integral de con respecto a es .
Paso 11
Sustituye por en .