Cálculo Ejemplos

Resuelve la Ecuación Diferencial (dx)/(dy)(6x-2xy)=1
Paso 1
Separa las variables.
Toca para ver más pasos...
Paso 1.1
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 1.1.1
Divide cada término en por .
Paso 1.1.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 1.1.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.1.2.1.1
Cancela el factor común.
Paso 1.1.2.1.2
Divide por .
Paso 1.1.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 1.1.3.1
Simplifica el denominador.
Toca para ver más pasos...
Paso 1.1.3.1.1
Factoriza de .
Toca para ver más pasos...
Paso 1.1.3.1.1.1
Factoriza de .
Paso 1.1.3.1.1.2
Factoriza de .
Paso 1.1.3.1.1.3
Factoriza de .
Paso 1.1.3.1.2
Reescribe como .
Paso 1.2
Reagrupa los factores.
Paso 1.3
Multiplica ambos lados por .
Paso 1.4
Simplifica.
Toca para ver más pasos...
Paso 1.4.1
Multiplica por .
Paso 1.4.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.4.2.1
Cancela el factor común.
Paso 1.4.2.2
Reescribe la expresión.
Paso 1.5
Reescribe la ecuación.
Paso 2
Integra ambos lados.
Toca para ver más pasos...
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
Integra el lado izquierdo.
Toca para ver más pasos...
Paso 2.2.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.2.2
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.2.3
Simplifica la respuesta.
Toca para ver más pasos...
Paso 2.2.3.1
Reescribe como .
Paso 2.2.3.2
Simplifica.
Toca para ver más pasos...
Paso 2.2.3.2.1
Combina y .
Paso 2.2.3.2.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.2.3.2.2.1
Cancela el factor común.
Paso 2.2.3.2.2.2
Reescribe la expresión.
Paso 2.2.3.2.3
Multiplica por .
Paso 2.3
Integra el lado derecho.
Toca para ver más pasos...
Paso 2.3.1
Sea . Entonces , de modo que . Reescribe mediante y .
Toca para ver más pasos...
Paso 2.3.1.1
Deja . Obtén .
Toca para ver más pasos...
Paso 2.3.1.1.1
Reescribe.
Paso 2.3.1.1.2
Divide por .
Paso 2.3.1.2
Reescribe el problema mediante y .
Paso 2.3.2
Divide la fracción en varias fracciones.
Paso 2.3.3
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.4
La integral de con respecto a es .
Paso 2.3.5
Simplifica.
Paso 2.3.6
Reemplaza todos los casos de con .
Paso 2.4
Agrupa la constante de integración en el lado derecho como .
Paso 3
Resuelve
Toca para ver más pasos...
Paso 3.1
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 3.2
La solución completa es el resultado de las partes positiva y negativa de la solución.
Toca para ver más pasos...
Paso 3.2.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 3.2.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 3.2.3
La solución completa es el resultado de las partes positiva y negativa de la solución.