Cálculo Ejemplos

Resuelve la Ecuación Diferencial (2xy^2-3y^3)dx+(7-3xy^2)dy=0
Paso 1
Obtén donde .
Toca para ver más pasos...
Paso 1.1
Diferencia con respecto a .
Paso 1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.3
Evalúa .
Toca para ver más pasos...
Paso 1.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.3.3
Multiplica por .
Paso 1.4
Evalúa .
Toca para ver más pasos...
Paso 1.4.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.4.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.4.3
Multiplica por .
Paso 1.5
Reordena los términos.
Paso 2
Obtén donde .
Toca para ver más pasos...
Paso 2.1
Diferencia con respecto a .
Paso 2.2
Diferencia.
Toca para ver más pasos...
Paso 2.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 2.2.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3
Evalúa .
Toca para ver más pasos...
Paso 2.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.3.3
Multiplica por .
Paso 2.4
Resta de .
Paso 3
Comprueba que .
Toca para ver más pasos...
Paso 3.1
Sustituye por y para .
Paso 3.2
Como el lado izquierdo no es igual al lado derecho, la ecuación no es una identidad.
no es una identidad.
no es una identidad.
Paso 4
Obtén el factor integrador .
Toca para ver más pasos...
Paso 4.1
Sustituye por .
Paso 4.2
Sustituye por .
Paso 4.3
Sustituye por .
Toca para ver más pasos...
Paso 4.3.1
Sustituye por .
Paso 4.3.2
Simplifica el numerador.
Toca para ver más pasos...
Paso 4.3.2.1
Aplica la propiedad distributiva.
Paso 4.3.2.2
Multiplica por .
Paso 4.3.2.3
Multiplica por .
Paso 4.3.2.4
Suma y .
Paso 4.3.2.5
Factoriza de .
Toca para ver más pasos...
Paso 4.3.2.5.1
Factoriza de .
Paso 4.3.2.5.2
Factoriza de .
Paso 4.3.2.5.3
Factoriza de .
Paso 4.3.3
Factoriza de .
Toca para ver más pasos...
Paso 4.3.3.1
Factoriza de .
Paso 4.3.3.2
Factoriza de .
Paso 4.3.3.3
Factoriza de .
Paso 4.3.4
Cancela el factor común de y .
Toca para ver más pasos...
Paso 4.3.4.1
Factoriza de .
Paso 4.3.4.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 4.3.4.2.1
Factoriza de .
Paso 4.3.4.2.2
Cancela el factor común.
Paso 4.3.4.2.3
Reescribe la expresión.
Paso 4.3.5
Cancela el factor común de y .
Toca para ver más pasos...
Paso 4.3.5.1
Factoriza de .
Paso 4.3.5.2
Factoriza de .
Paso 4.3.5.3
Factoriza de .
Paso 4.3.5.4
Reescribe como .
Paso 4.3.5.5
Reordena los términos.
Paso 4.3.5.6
Cancela el factor común.
Paso 4.3.5.7
Reescribe la expresión.
Paso 4.3.6
Multiplica por .
Paso 4.3.7
Sustituye por .
Paso 4.4
Obtén el factor integrador .
Paso 5
Evalúa la integral .
Toca para ver más pasos...
Paso 5.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 5.2
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 5.3
Multiplica por .
Paso 5.4
La integral de con respecto a es .
Paso 5.5
Simplifica.
Paso 5.6
Simplifica cada término.
Toca para ver más pasos...
Paso 5.6.1
Simplifica al mover dentro del algoritmo.
Paso 5.6.2
Potencia y logaritmo son funciones inversas.
Paso 5.6.3
Elimina el valor absoluto en porque las potenciaciones con potencias pares siempre son positivas.
Paso 5.6.4
Reescribe la expresión mediante la regla del exponente negativo .
Paso 6
Multiplica ambos lados de por el factor integrador .
Toca para ver más pasos...
Paso 6.1
Multiplica por .
Paso 6.2
Multiplica por .
Paso 6.3
Factoriza de .
Toca para ver más pasos...
Paso 6.3.1
Factoriza de .
Paso 6.3.2
Factoriza de .
Paso 6.3.3
Factoriza de .
Paso 6.4
Cancela el factor común de .
Toca para ver más pasos...
Paso 6.4.1
Cancela el factor común.
Paso 6.4.2
Divide por .
Paso 6.5
Multiplica por .
Paso 6.6
Multiplica por .
Paso 7
Establece igual a la integral de .
Paso 8
Integra para obtener .
Toca para ver más pasos...
Paso 8.1
Divide la única integral en varias integrales.
Paso 8.2
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 8.3
Según la regla de la potencia, la integral de con respecto a es .
Paso 8.4
Aplica la regla de la constante.
Paso 8.5
Combina y .
Paso 8.6
Simplifica.
Paso 9
Como la integral de , contendrá una constante de integración, podemos reemplazar con .
Paso 10
Establece .
Paso 11
Obtén .
Toca para ver más pasos...
Paso 11.1
Diferencia con respecto a .
Paso 11.2
Diferencia.
Toca para ver más pasos...
Paso 11.2.1
Según la regla de la suma, la derivada de con respecto a es .
Paso 11.2.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 11.3
Evalúa .
Toca para ver más pasos...
Paso 11.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 11.3.2
Diferencia con la regla de la potencia, que establece que es donde .
Paso 11.3.3
Multiplica por .
Paso 11.4
Diferencia con la regla de la función que establece que la derivada de es .
Paso 11.5
Simplifica.
Toca para ver más pasos...
Paso 11.5.1
Resta de .
Paso 11.5.2
Reordena los términos.
Paso 12
Resuelve
Toca para ver más pasos...
Paso 12.1
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Toca para ver más pasos...
Paso 12.1.1
Suma a ambos lados de la ecuación.
Paso 12.1.2
Simplifica cada término.
Toca para ver más pasos...
Paso 12.1.2.1
Divide la fracción en dos fracciones.
Paso 12.1.2.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 12.1.2.2.1
Cancela el factor común.
Paso 12.1.2.2.2
Divide por .
Paso 12.1.3
Combina los términos opuestos en .
Toca para ver más pasos...
Paso 12.1.3.1
Suma y .
Paso 12.1.3.2
Suma y .
Paso 13
Obtén la antiderivada de y obtén .
Toca para ver más pasos...
Paso 13.1
Integra ambos lados de .
Paso 13.2
Evalúa .
Paso 13.3
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 13.4
Mueve fuera del denominador mediante su elevación a la potencia .
Paso 13.5
Multiplica los exponentes en .
Toca para ver más pasos...
Paso 13.5.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 13.5.2
Multiplica por .
Paso 13.6
Según la regla de la potencia, la integral de con respecto a es .
Paso 13.7
Simplifica la respuesta.
Toca para ver más pasos...
Paso 13.7.1
Reescribe como .
Paso 13.7.2
Simplifica.
Toca para ver más pasos...
Paso 13.7.2.1
Multiplica por .
Paso 13.7.2.2
Combina y .
Paso 13.7.2.3
Mueve el negativo al frente de la fracción.
Paso 14
Sustituye por en .