Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Diferencia con respecto a .
Paso 1.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 1.3
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.4
Como es constante con respecto a , la derivada de con respecto a es .
Paso 1.5
Diferencia con la regla de la potencia, que establece que es donde .
Paso 1.6
Combina los términos.
Paso 1.6.1
Suma y .
Paso 1.6.2
Suma y .
Paso 2
Paso 2.1
Diferencia con respecto a .
Paso 2.2
Como es constante con respecto a , la derivada de con respecto a es .
Paso 2.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 2.4
Multiplica por .
Paso 3
Paso 3.1
Sustituye por y para .
Paso 3.2
Como el lado izquierdo no es igual al lado derecho, la ecuación no es una identidad.
no es una identidad.
no es una identidad.
Paso 4
Paso 4.1
Sustituye por .
Paso 4.2
Sustituye por .
Paso 4.3
Sustituye por .
Paso 4.3.1
Sustituye por .
Paso 4.3.2
Suma y .
Paso 4.3.3
Mueve el negativo al frente de la fracción.
Paso 4.4
Obtén el factor integrador .
Paso 5
Paso 5.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 5.2
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 5.3
Multiplica por .
Paso 5.4
La integral de con respecto a es .
Paso 5.5
Simplifica.
Paso 5.6
Simplifica cada término.
Paso 5.6.1
Simplifica al mover dentro del algoritmo.
Paso 5.6.2
Potencia y logaritmo son funciones inversas.
Paso 5.6.3
Elimina el valor absoluto en porque las potenciaciones con potencias pares siempre son positivas.
Paso 5.6.4
Reescribe la expresión mediante la regla del exponente negativo .
Paso 6
Paso 6.1
Multiplica por .
Paso 6.2
Multiplica por .
Paso 6.3
Multiplica por .
Paso 6.4
Cancela el factor común de .
Paso 6.4.1
Factoriza de .
Paso 6.4.2
Factoriza de .
Paso 6.4.3
Cancela el factor común.
Paso 6.4.4
Reescribe la expresión.
Paso 7
Establece igual a la integral de .
Paso 8
Paso 8.1
Aplica la regla de la constante.
Paso 8.2
Combina y .
Paso 9
Como la integral de , contendrá una constante de integración, podemos reemplazar con .
Paso 10
Establece .
Paso 11
Paso 11.1
Diferencia con respecto a .
Paso 11.2
Según la regla de la suma, la derivada de con respecto a es .
Paso 11.3
Evalúa .
Paso 11.3.1
Como es constante con respecto a , la derivada de con respecto a es .
Paso 11.3.2
Reescribe como .
Paso 11.3.3
Diferencia con la regla de la potencia, que establece que es donde .
Paso 11.3.4
Multiplica por .
Paso 11.3.5
Multiplica por .
Paso 11.4
Diferencia con la regla de la función que establece que la derivada de es .
Paso 11.5
Simplifica.
Paso 11.5.1
Reescribe la expresión mediante la regla del exponente negativo .
Paso 11.5.2
Combina y .
Paso 11.5.3
Reordena los términos.
Paso 12
Paso 12.1
Resuelve
Paso 12.1.1
Mueve todos los términos que contengan las variables al lado izquierdo de la ecuación
Paso 12.1.1.1
Resta de ambos lados de la ecuación.
Paso 12.1.1.2
Combina los numeradores sobre el denominador común.
Paso 12.1.1.3
Simplifica cada término.
Paso 12.1.1.3.1
Aplica la propiedad distributiva.
Paso 12.1.1.3.2
Multiplica .
Paso 12.1.1.3.2.1
Multiplica por .
Paso 12.1.1.3.2.2
Multiplica por .
Paso 12.1.1.4
Combina los términos opuestos en .
Paso 12.1.1.4.1
Resta de .
Paso 12.1.1.4.2
Suma y .
Paso 12.1.1.5
Simplifica cada término.
Paso 12.1.1.5.1
Simplifica el numerador.
Paso 12.1.1.5.1.1
Factoriza de .
Paso 12.1.1.5.1.1.1
Factoriza de .
Paso 12.1.1.5.1.1.2
Eleva a la potencia de .
Paso 12.1.1.5.1.1.3
Factoriza de .
Paso 12.1.1.5.1.1.4
Factoriza de .
Paso 12.1.1.5.1.2
Reescribe como .
Paso 12.1.1.5.1.3
Reescribe como .
Paso 12.1.1.5.1.4
Dado que ambos términos son cubos perfectos, factoriza con la fórmula de la suma de cubos, , donde y .
Paso 12.1.1.5.1.5
Simplifica.
Paso 12.1.1.5.1.5.1
Aplica la regla del producto a .
Paso 12.1.1.5.1.5.2
Eleva a la potencia de .
Paso 12.1.1.5.1.5.3
Multiplica por .
Paso 12.1.1.5.1.5.4
Multiplica .
Paso 12.1.1.5.1.5.4.1
Multiplica por .
Paso 12.1.1.5.1.5.4.2
Multiplica por .
Paso 12.1.1.5.1.5.5
Multiplica por .
Paso 12.1.1.5.1.5.6
Uno elevado a cualquier potencia es uno.
Paso 12.1.1.5.2
Cancela el factor común de y .
Paso 12.1.1.5.2.1
Factoriza de .
Paso 12.1.1.5.2.2
Cancela los factores comunes.
Paso 12.1.1.5.2.2.1
Factoriza de .
Paso 12.1.1.5.2.2.2
Cancela el factor común.
Paso 12.1.1.5.2.2.3
Reescribe la expresión.
Paso 12.1.1.6
Para escribir como una fracción con un denominador común, multiplica por .
Paso 12.1.1.7
Combina los numeradores sobre el denominador común.
Paso 12.1.1.8
Simplifica el numerador.
Paso 12.1.1.8.1
Expande mediante la multiplicación de cada término de la primera expresión por cada término de la segunda expresión.
Paso 12.1.1.8.2
Simplifica cada término.
Paso 12.1.1.8.2.1
Multiplica por sumando los exponentes.
Paso 12.1.1.8.2.1.1
Mueve .
Paso 12.1.1.8.2.1.2
Multiplica por .
Paso 12.1.1.8.2.1.2.1
Eleva a la potencia de .
Paso 12.1.1.8.2.1.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 12.1.1.8.2.1.3
Suma y .
Paso 12.1.1.8.2.2
Multiplica por sumando los exponentes.
Paso 12.1.1.8.2.2.1
Mueve .
Paso 12.1.1.8.2.2.2
Multiplica por .
Paso 12.1.1.8.2.3
Multiplica por .
Paso 12.1.1.8.2.4
Multiplica por .
Paso 12.1.1.8.2.5
Multiplica por .
Paso 12.1.1.8.2.6
Multiplica por .
Paso 12.1.1.8.3
Combina los términos opuestos en .
Paso 12.1.1.8.3.1
Suma y .
Paso 12.1.1.8.3.2
Suma y .
Paso 12.1.1.8.3.3
Suma y .
Paso 12.1.1.8.3.4
Suma y .
Paso 12.1.2
Establece el numerador igual a cero.
Paso 12.1.3
Resuelve la ecuación en .
Paso 12.1.3.1
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Paso 12.1.3.1.1
Suma a ambos lados de la ecuación.
Paso 12.1.3.1.2
Resta de ambos lados de la ecuación.
Paso 12.1.3.2
Divide cada término en por y simplifica.
Paso 12.1.3.2.1
Divide cada término en por .
Paso 12.1.3.2.2
Simplifica el lado izquierdo.
Paso 12.1.3.2.2.1
Cancela el factor común de .
Paso 12.1.3.2.2.1.1
Cancela el factor común.
Paso 12.1.3.2.2.1.2
Divide por .
Paso 12.1.3.2.3
Simplifica el lado derecho.
Paso 12.1.3.2.3.1
Simplifica cada término.
Paso 12.1.3.2.3.1.1
Cancela el factor común de y .
Paso 12.1.3.2.3.1.1.1
Factoriza de .
Paso 12.1.3.2.3.1.1.2
Cancela los factores comunes.
Paso 12.1.3.2.3.1.1.2.1
Eleva a la potencia de .
Paso 12.1.3.2.3.1.1.2.2
Factoriza de .
Paso 12.1.3.2.3.1.1.2.3
Cancela el factor común.
Paso 12.1.3.2.3.1.1.2.4
Reescribe la expresión.
Paso 12.1.3.2.3.1.1.2.5
Divide por .
Paso 12.1.3.2.3.1.2
Mueve el negativo al frente de la fracción.
Paso 13
Paso 13.1
Integra ambos lados de .
Paso 13.2
Evalúa .
Paso 13.3
Divide la única integral en varias integrales.
Paso 13.4
Según la regla de la potencia, la integral de con respecto a es .
Paso 13.5
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 13.6
La integral de con respecto a es .
Paso 13.7
Simplifica.
Paso 14
Sustituye por en .
Paso 15
Combina y .