Ingresa un problema...
Cálculo Ejemplos
Paso 1
Paso 1.1
Multiplica ambos lados por .
Paso 1.2
Cancela el factor común de .
Paso 1.2.1
Cancela el factor común.
Paso 1.2.2
Reescribe la expresión.
Paso 1.3
Reescribe la ecuación.
Paso 2
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
Integra el lado izquierdo.
Paso 2.2.1
Divide la única integral en varias integrales.
Paso 2.2.2
Aplica la regla de la constante.
Paso 2.2.3
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.2.4
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.2.5
Simplifica.
Paso 2.2.5.1
Simplifica.
Paso 2.2.5.2
Simplifica.
Paso 2.2.5.2.1
Combina y .
Paso 2.2.5.2.2
Cancela el factor común de .
Paso 2.2.5.2.2.1
Cancela el factor común.
Paso 2.2.5.2.2.2
Reescribe la expresión.
Paso 2.2.5.2.3
Multiplica por .
Paso 2.2.6
Reordena los términos.
Paso 2.3
Integra el lado derecho.
Paso 2.3.1
Dado que es constante con respecto a , mueve fuera de la integral.
Paso 2.3.2
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.3.3
Simplifica la respuesta.
Paso 2.3.3.1
Reescribe como .
Paso 2.3.3.2
Simplifica.
Paso 2.3.3.2.1
Combina y .
Paso 2.3.3.2.2
Cancela el factor común de .
Paso 2.3.3.2.2.1
Cancela el factor común.
Paso 2.3.3.2.2.2
Reescribe la expresión.
Paso 2.3.3.2.3
Multiplica por .
Paso 2.4
Agrupa la constante de integración en el lado derecho como .
Paso 3
Paso 3.1
Mueve todas las expresiones al lado izquierdo de la ecuación.
Paso 3.1.1
Resta de ambos lados de la ecuación.
Paso 3.1.2
Resta de ambos lados de la ecuación.
Paso 3.2
Usa la fórmula cuadrática para obtener las soluciones.
Paso 3.3
Sustituye los valores , y en la fórmula cuadrática y resuelve .
Paso 3.4
Simplifica.
Paso 3.4.1
Simplifica el numerador.
Paso 3.4.1.1
Uno elevado a cualquier potencia es uno.
Paso 3.4.1.2
Multiplica por .
Paso 3.4.1.3
Aplica la propiedad distributiva.
Paso 3.4.1.4
Multiplica por .
Paso 3.4.1.5
Multiplica por .
Paso 3.4.2
Multiplica por .
Paso 3.5
La respuesta final es la combinación de ambas soluciones.
Paso 4
Simplifica la constante de integración.