Ingresa un problema...
Cálculo Ejemplos
,
Paso 1
Paso 1.1
Multiplica ambos lados por .
Paso 1.2
Cancela el factor común de .
Paso 1.2.1
Factoriza de .
Paso 1.2.2
Cancela el factor común.
Paso 1.2.3
Reescribe la expresión.
Paso 1.3
Reescribe la ecuación.
Paso 2
Paso 2.1
Establece una integral en cada lado.
Paso 2.2
Integra el lado izquierdo.
Paso 2.2.1
Aplica reglas básicas de exponentes.
Paso 2.2.1.1
Mueve fuera del denominador mediante su elevación a la potencia .
Paso 2.2.1.2
Multiplica los exponentes en .
Paso 2.2.1.2.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.2.1.2.2
Multiplica por .
Paso 2.2.2
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.2.3
Simplifica la respuesta.
Paso 2.2.3.1
Reescribe como .
Paso 2.2.3.2
Simplifica.
Paso 2.2.3.2.1
Multiplica por .
Paso 2.2.3.2.2
Mueve a la izquierda de .
Paso 2.3
Según la regla de la potencia, la integral de con respecto a es .
Paso 2.4
Agrupa la constante de integración en el lado derecho como .
Paso 3
Paso 3.1
Combina y .
Paso 3.2
Obtén el mcd de los términos en la ecuación.
Paso 3.2.1
La obtención del mcd de una lista de valores es lo mismo que obtener el MCM de los denominadores de esos valores.
Paso 3.2.2
Como contiene tanto números como variables, hay dos pasos para obtener el MCM. Obtén el MCM para la parte numérica y, luego, obtén el MCM para la parte variable .
Paso 3.2.3
El MCM es el número positivo más pequeño en el que se dividen uniformemente todos los números.
1. Indica los factores primos de cada número.
2. Multiplica cada factor la mayor cantidad de veces que aparece en cualquier número.
Paso 3.2.4
Como no tiene factores además de y .
es un número primo
Paso 3.2.5
Como no tiene factores además de y .
es un número primo
Paso 3.2.6
El número no es un número primo porque solo tiene un factor positivo, que es sí mismo.
No es primo
Paso 3.2.7
El MCM de es el resultado de la multiplicación de todos los factores primos la mayor cantidad de veces que ocurran en cualquiera de los números.
Paso 3.2.8
Multiplica por .
Paso 3.2.9
Los factores para son , que es multiplicada una por la otra veces.
ocurre veces.
Paso 3.2.10
El MCM de es el resultado de la multiplicación de todos los factores primos la mayor cantidad de veces que ocurran en cualquiera de los términos.
Paso 3.2.11
Multiplica por .
Paso 3.2.12
El MCM para es la parte numérica multiplicada por la parte variable.
Paso 3.3
Multiplica cada término en por para eliminar las fracciones.
Paso 3.3.1
Multiplica cada término en por .
Paso 3.3.2
Simplifica el lado izquierdo.
Paso 3.3.2.1
Cancela el factor común de .
Paso 3.3.2.1.1
Mueve el signo menos inicial en al numerador.
Paso 3.3.2.1.2
Factoriza de .
Paso 3.3.2.1.3
Cancela el factor común.
Paso 3.3.2.1.4
Reescribe la expresión.
Paso 3.3.2.2
Multiplica por .
Paso 3.3.3
Simplifica el lado derecho.
Paso 3.3.3.1
Simplifica cada término.
Paso 3.3.3.1.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.3.3.1.2
Cancela el factor común de .
Paso 3.3.3.1.2.1
Factoriza de .
Paso 3.3.3.1.2.2
Cancela el factor común.
Paso 3.3.3.1.2.3
Reescribe la expresión.
Paso 3.3.3.1.3
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.4
Resuelve la ecuación.
Paso 3.4.1
Reescribe la ecuación como .
Paso 3.4.2
Factoriza de .
Paso 3.4.2.1
Factoriza de .
Paso 3.4.2.2
Factoriza de .
Paso 3.4.2.3
Factoriza de .
Paso 3.4.3
Divide cada término en por y simplifica.
Paso 3.4.3.1
Divide cada término en por .
Paso 3.4.3.2
Simplifica el lado izquierdo.
Paso 3.4.3.2.1
Cancela el factor común de .
Paso 3.4.3.2.1.1
Cancela el factor común.
Paso 3.4.3.2.1.2
Reescribe la expresión.
Paso 3.4.3.2.2
Cancela el factor común de .
Paso 3.4.3.2.2.1
Cancela el factor común.
Paso 3.4.3.2.2.2
Divide por .
Paso 3.4.3.3
Simplifica el lado derecho.
Paso 3.4.3.3.1
Mueve el negativo al frente de la fracción.
Paso 3.4.4
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 3.4.5
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 3.4.5.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 3.4.5.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 3.4.5.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 4
Simplifica la constante de integración.
Paso 5
Como es negativa en la condición inicial , solo considera para obtener . Sustituye por y por .
Paso 6
Paso 6.1
Reescribe la ecuación como .
Paso 6.2
Para eliminar el radical en el lazo izquierdo de la ecuación, eleva al cuadrado ambos lados de la ecuación.
Paso 6.3
Simplifica cada lado de la ecuación.
Paso 6.3.1
Usa para reescribir como .
Paso 6.3.2
Simplifica el lado izquierdo.
Paso 6.3.2.1
Simplifica .
Paso 6.3.2.1.1
Uno elevado a cualquier potencia es uno.
Paso 6.3.2.1.2
Usa la regla de la potencia para distribuir el exponente.
Paso 6.3.2.1.2.1
Aplica la regla del producto a .
Paso 6.3.2.1.2.2
Aplica la regla del producto a .
Paso 6.3.2.1.2.3
Aplica la regla del producto a .
Paso 6.3.2.1.3
Multiplica por sumando los exponentes.
Paso 6.3.2.1.3.1
Mueve .
Paso 6.3.2.1.3.2
Multiplica por .
Paso 6.3.2.1.3.2.1
Eleva a la potencia de .
Paso 6.3.2.1.3.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 6.3.2.1.3.3
Escribe como una fracción con un denominador común.
Paso 6.3.2.1.3.4
Combina los numeradores sobre el denominador común.
Paso 6.3.2.1.3.5
Suma y .
Paso 6.3.2.1.4
Reescribe como .
Paso 6.3.2.1.5
Eleva a la potencia de .
Paso 6.3.2.1.6
Reescribe como .
Paso 6.3.2.1.7
Combina y .
Paso 6.3.2.1.8
Usa la regla de la potencia para distribuir el exponente.
Paso 6.3.2.1.8.1
Aplica la regla del producto a .
Paso 6.3.2.1.8.2
Aplica la regla del producto a .
Paso 6.3.2.1.8.3
Aplica la regla del producto a .
Paso 6.3.2.1.9
Simplifica el numerador.
Paso 6.3.2.1.9.1
Reescribe como .
Paso 6.3.2.1.9.2
Multiplica los exponentes en .
Paso 6.3.2.1.9.2.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 6.3.2.1.9.2.2
Cancela el factor común de .
Paso 6.3.2.1.9.2.2.1
Cancela el factor común.
Paso 6.3.2.1.9.2.2.2
Reescribe la expresión.
Paso 6.3.2.1.9.3
Evalúa el exponente.
Paso 6.3.2.1.10
Simplifica el denominador.
Paso 6.3.2.1.10.1
Multiplica los exponentes en .
Paso 6.3.2.1.10.1.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 6.3.2.1.10.1.2
Cancela el factor común de .
Paso 6.3.2.1.10.1.2.1
Cancela el factor común.
Paso 6.3.2.1.10.1.2.2
Reescribe la expresión.
Paso 6.3.2.1.10.2
Evalúa el exponente.
Paso 6.3.2.1.10.3
Multiplica los exponentes en .
Paso 6.3.2.1.10.3.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 6.3.2.1.10.3.2
Cancela el factor común de .
Paso 6.3.2.1.10.3.2.1
Cancela el factor común.
Paso 6.3.2.1.10.3.2.2
Reescribe la expresión.
Paso 6.3.2.1.10.4
Simplifica.
Paso 6.3.2.1.11
Simplifica la expresión.
Paso 6.3.2.1.11.1
Multiplica por .
Paso 6.3.2.1.11.2
Mueve el negativo al frente de la fracción.
Paso 6.3.3
Simplifica el lado derecho.
Paso 6.3.3.1
Eleva a la potencia de .
Paso 6.4
Resuelve
Paso 6.4.1
Obtén el mcd de los términos en la ecuación.
Paso 6.4.1.1
La obtención del mcd de una lista de valores es lo mismo que obtener el MCM de los denominadores de esos valores.
Paso 6.4.1.2
El mínimo común múltiplo (MCM) de una y cualquier expresión es la expresión.
Paso 6.4.2
Multiplica cada término en por para eliminar las fracciones.
Paso 6.4.2.1
Multiplica cada término en por .
Paso 6.4.2.2
Simplifica el lado izquierdo.
Paso 6.4.2.2.1
Cancela el factor común de .
Paso 6.4.2.2.1.1
Mueve el signo menos inicial en al numerador.
Paso 6.4.2.2.1.2
Cancela el factor común.
Paso 6.4.2.2.1.3
Reescribe la expresión.
Paso 6.4.2.3
Simplifica el lado derecho.
Paso 6.4.2.3.1
Multiplica por .
Paso 6.4.2.3.2
Aplica la propiedad distributiva.
Paso 6.4.2.3.3
Multiplica por .
Paso 6.4.3
Resuelve la ecuación.
Paso 6.4.3.1
Reescribe la ecuación como .
Paso 6.4.3.2
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Paso 6.4.3.2.1
Resta de ambos lados de la ecuación.
Paso 6.4.3.2.2
Resta de .
Paso 6.4.3.3
Divide cada término en por y simplifica.
Paso 6.4.3.3.1
Divide cada término en por .
Paso 6.4.3.3.2
Simplifica el lado izquierdo.
Paso 6.4.3.3.2.1
Cancela el factor común de .
Paso 6.4.3.3.2.1.1
Cancela el factor común.
Paso 6.4.3.3.2.1.2
Divide por .
Paso 6.4.3.3.3
Simplifica el lado derecho.
Paso 6.4.3.3.3.1
Mueve el negativo al frente de la fracción.
Paso 7
Paso 7.1
Sustituye por .
Paso 7.2
Simplifica el denominador.
Paso 7.2.1
Para escribir como una fracción con un denominador común, multiplica por .
Paso 7.2.2
Combina y .
Paso 7.2.3
Combina los numeradores sobre el denominador común.
Paso 7.2.4
Mueve a la izquierda de .
Paso 7.3
Combina y .
Paso 7.4
Reduce la expresión mediante la cancelación de los factores comunes.
Paso 7.4.1
Reduce la expresión mediante la cancelación de los factores comunes.
Paso 7.4.1.1
Cancela el factor común.
Paso 7.4.1.2
Reescribe la expresión.
Paso 7.4.2
Divide por .